Gravity and the Poincare group

Giuseppe Nardelli, Gianluca Grignani, G. Grignani, G. Nardelli

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

84 Citazioni (Scopus)

Abstract

We discuss gravity as a gauge theory of the Poincaré group in three and four dimensions, i.e., in a metric-independent fashion. The fundamental fields of the theory are the gauge potentials, the matter fields, and the so-called Poincaré coordinates qa(x) a set of fields that are defined on the space-time manifold, but that transform as Poincaré vectors under gauge transformations. The presence of such coordinates is necessary in order to construct a gauge theory of the Poincaré group. We discuss the procedure needed to connect this theory with the Einsteinian formulation of gravity, and we show that the field equations for the gauge potentials, for pointlike sources, and for scalar and spinor matter fields reproduce the Einstein equations, the geodesics equations, and the Klein-Gordon and the Dirac equations in curved space-time, respectively. In 2+1 dimensions and in the presence of pointlike sources this gauge-theoretical approach can be further developed: the gauge potentials can be written almost everywhere as pure gauge, and a solution of the field equations provides, at the same time, the space-time metric and the set of coordinates that globally flatten the metric.
Lingua originaleEnglish
pagine (da-a)2719-2731
Numero di pagine13
RivistaPHYSICAL REVIEW D
Volume1991
DOI
Stato di pubblicazionePubblicato - 1991

Keywords

  • Gravity
  • gauge theory of gravity

Fingerprint Entra nei temi di ricerca di 'Gravity and the Poincare group'. Insieme formano una fingerprint unica.

Cita questo