Genomic comparison of lactobacillus helveticus strains highlights probiotic potential

Alessandra Fontana, Irene Falasconi, Paola Molinari, Laura Treu, Arianna Basile, Alessandro Vezzi, Stefano Campanaro, Lorenzo Morelli

Risultato della ricerca: Contributo in rivistaArticolo in rivista

15 Citazioni (Scopus)

Abstract

Lactobacillus helveticus belongs to the large group of lactic acid bacteria (LAB), which are the major players in the fermentation of a wide range of foods. LAB are also present in the human gut, which has often been exploited as a reservoir of potential novel probiotic strains, but several parameters need to be assessed before establishing their safety and potential use for human consumption. In the present study, six L. helveticus strains isolated from natural whey cultures were analyzed for their phenotype and genotype in exopolysaccharide (EPS) production, low pH and bile salt tolerance, bile salt hydrolase (BSH) activity, and antibiotic resistance profile. In addition, a comparative genomic investigation was performed between the six newly sequenced strains and the 51 publicly available genomes of L. helveticus to define the pangenome structure. The results indicate that the newly sequenced strain UC1267 and the deposited strain DSM 20075 can be considered good candidates for gut-adapted strains due to their ability to survive in the presence of 0.2% glycocholic acid (GCA) and 1% taurocholic and taurodeoxycholic acid (TDCA). Moreover, these strains had the highest bile salt deconjugation activity among the tested L. helveticus strains. Considering the safety profile, none of these strains presented antibiotic resistance phenotypically and/or at the genome level. The pangenome analysis revealed genes specific to the new isolates, such as enzymes related to folate biosynthesis in strains UC1266 and UC1267 and an integrated phage in strain UC1035. Finally, the presence of maltose-degrading enzymes and multiple copies of 6-phospho-beta-glucosidase genes in our strains indicates the capability to metabolize sugars other than lactose, which is related solely to dairy niches.
Lingua originaleEnglish
pagine (da-a)1380-N/A
RivistaFrontiers in Microbiology
Volume10
DOI
Stato di pubblicazionePubblicato - 2019

Keywords

  • Antibiotic resistance
  • Bile salts tolerance
  • Comparative genomics
  • Exopolysaccharides
  • Lactic Acid Bacteria
  • Lactobacillus Helveticus
  • Probiotics

Fingerprint

Entra nei temi di ricerca di 'Genomic comparison of lactobacillus helveticus strains highlights probiotic potential'. Insieme formano una fingerprint unica.

Cita questo