TY - JOUR
T1 - Genetic analysis of type-1 insulin-like growth factor receptor signaling through insulin receptor substrate-1 and -2 in pancreatic β cells
AU - Xuan, Shouhong
AU - Szabolcs, Matthias
AU - Cinti, Francesca
AU - Perincheri, Suhdir
AU - Accili, Domenico
AU - Efstratiadis, Argiris
PY - 2010
Y1 - 2010
N2 - Signaling by receptor tyrosine kinases regulates pancreatic β cell function. Inactivation of insulin receptor (InsR), IGF1 receptor (Igf1r), or Irs1 in β cells impairs insulin secretion. Conversely, Irs2 ablation impairs β cell replication. In this study, we examined aspects of the Igf1r regulatory signaling cascade in β cells. To examine genetically the involvement of Irs1 and Irs2 in Igf1r signaling, we generated double mutant mice lacking Igf1r specifically in pancreatic β cells in an Irs1- or Irs2-null background. We show that Igf1r/Irs1 double mutants do not differ phenotypically from Irs1 single mutants and exhibit hyperinsulinemia, while maintaining normal β cell mass and glucose tolerance. In contrast, lack of Igf1r function in β cells aggravates the consequences of Irs2 ablation in double mutants and results in lethal diabetes by 6 weeks of age. This additivity of phenotypic manifestations indicates that Irs2 serves a pathway that is largely independent of Igf1r signaling. Consistent with the view that the latter is the InsR pathway, we show that combined β cell-specific knock-out of both Insr and Igf1r results in a phenocopy of double mutants lacking Igf1r and Irs2. We conclude that Igf1r signals primarily through Irs1 and affects insulin secretion, whereas β cell proliferation is mainly regulated by InsR using Irs2 as a downstream signaling effector. The insulin and IGF pathways appear to control β cell functions independently and selectively. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.
AB - Signaling by receptor tyrosine kinases regulates pancreatic β cell function. Inactivation of insulin receptor (InsR), IGF1 receptor (Igf1r), or Irs1 in β cells impairs insulin secretion. Conversely, Irs2 ablation impairs β cell replication. In this study, we examined aspects of the Igf1r regulatory signaling cascade in β cells. To examine genetically the involvement of Irs1 and Irs2 in Igf1r signaling, we generated double mutant mice lacking Igf1r specifically in pancreatic β cells in an Irs1- or Irs2-null background. We show that Igf1r/Irs1 double mutants do not differ phenotypically from Irs1 single mutants and exhibit hyperinsulinemia, while maintaining normal β cell mass and glucose tolerance. In contrast, lack of Igf1r function in β cells aggravates the consequences of Irs2 ablation in double mutants and results in lethal diabetes by 6 weeks of age. This additivity of phenotypic manifestations indicates that Irs2 serves a pathway that is largely independent of Igf1r signaling. Consistent with the view that the latter is the InsR pathway, we show that combined β cell-specific knock-out of both Insr and Igf1r results in a phenocopy of double mutants lacking Igf1r and Irs2. We conclude that Igf1r signals primarily through Irs1 and affects insulin secretion, whereas β cell proliferation is mainly regulated by InsR using Irs2 as a downstream signaling effector. The insulin and IGF pathways appear to control β cell functions independently and selectively. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.
KW - insulin
KW - insulin
UR - http://hdl.handle.net/10807/231204
U2 - 10.1074/jbc.M110.144790
DO - 10.1074/jbc.M110.144790
M3 - Article
SN - 0021-9258
VL - 285
SP - 41044
EP - 41050
JO - THE JOURNAL OF BIOLOGICAL CHEMISTRY
JF - THE JOURNAL OF BIOLOGICAL CHEMISTRY
ER -