Generalized Extreme Value Regression: an Application to Credit Defaults.

Silvia Angela Osmetti, Raffaella Calabrese

Risultato della ricerca: Contributo in libroContributo a convegno

Abstract

In order to model credit defaults we propose a Generalized Linear Model (McCullagh and Neleder, 1989) whose link function is the quantile function of the Generalized Extreme Value (GEV) distribution (Kotz and Nadarajah, 2000). In particular, the dependent variable is binary and describes the rare event of a credit default. The goal of this paper is to overcome the drawbacks shown by the logistic regression in rare events. By using the logit link function the probability of rare events could be underestimated. Furthermore, the logit link is a symmetric function, not appropriated when the dependent variable is a rare event. We choose the GEV quantile function as skewed link function since we focus our attention on the tail of the response curve for the values close to 1. We define the proposed model GEV regression
Lingua originaleEnglish
Titolo della pubblicazione ospiteBulletin of the International Statistical Institute LXII. Proceedings of the 58th session of the International Statistical Institute
Pagine1-6
Numero di pagine6
Stato di pubblicazionePubblicato - 2011
Evento58th Word Statistics Congresses of the International Statistical Institute - Dublino
Durata: 21 ago 201226 ago 2012

Convegno

Convegno58th Word Statistics Congresses of the International Statistical Institute
CittàDublino
Periodo21/8/1226/8/12

Keywords

  • generalized linear model
  • rare event

Fingerprint

Entra nei temi di ricerca di 'Generalized Extreme Value Regression: an Application to Credit Defaults.'. Insieme formano una fingerprint unica.

Cita questo