Abstract
We consider thousands of endogenous retrovirus detected in the human and mouse genomes, and quantify a large number of genomic landscape features at high resolution around their integration sites and in control regions.We propose to analyze this data employing a recently developed functional inferential procedure and functional logistic regression, with the aim of gaining insights on the effects of genomic landscape features on the integration and fixation of endogenous retroviruses.
Lingua originale | English |
---|---|
Titolo della pubblicazione ospite | Functional Statistics and Related Fields |
Editor | G. Aneiros, E. Bongiorno, R. Cao, P. Vieu |
Pagine | 87-93 |
Numero di pagine | 7 |
DOI | |
Stato di pubblicazione | Pubblicato - 2017 |
Keywords
- Genomics
- Human genome
- endogenous retroviruses
- functional data analysis