Functional data analysis of “Omics” data: how does the genomic landscape influence integration and fixation of endogenous retroviruses?

Alessia Pini, Marzia A. Cremona, Rebeca Campos-Sánchez, Simone Vantini, Kateryna D. Makova, Francesca Chiaromonte

Risultato della ricerca: Contributo in libroChapter

Abstract

We consider thousands of endogenous retrovirus detected in the human and mouse genomes, and quantify a large number of genomic landscape features at high resolution around their integration sites and in control regions.We propose to analyze this data employing a recently developed functional inferential procedure and functional logistic regression, with the aim of gaining insights on the effects of genomic landscape features on the integration and fixation of endogenous retroviruses.
Lingua originaleEnglish
Titolo della pubblicazione ospiteFunctional Statistics and Related Fields
EditorG. Aneiros, E. Bongiorno, R. Cao, P. Vieu
Pagine87-93
Numero di pagine7
DOI
Stato di pubblicazionePubblicato - 2017

Keywords

  • Genomics
  • Human genome
  • endogenous retroviruses
  • functional data analysis

Fingerprint

Entra nei temi di ricerca di 'Functional data analysis of “Omics” data: how does the genomic landscape influence integration and fixation of endogenous retroviruses?'. Insieme formano una fingerprint unica.

Cita questo