TY - JOUR
T1 - FOXM1 expression is significantly associated with chemotherapy resistance and adverse prognosis in non-serous epithelial ovarian cancer patients
AU - Tassi, Renata A.
AU - Todeschini, Paola
AU - Siegel, Eric R.
AU - Calza, Stefano
AU - Cappella, Paolo
AU - Ardighieri, Laura
AU - Cadei, Moris
AU - Cadei, Manuela
AU - Bugatti, Mattia
AU - Romani, Chiara
AU - Bandiera, Elisabetta
AU - Zanotti, Laura
AU - Tassone, Laura
AU - Guarino, Donatella
AU - Santonocito, Concetta
AU - Capoluongo, Ettore Domenico
AU - Beltrame, Luca
AU - Erba, Eugenio
AU - Marchini, Sergio
AU - D’Incalci, Maurizio
AU - Donzelli, Carla
AU - Santin, Alessandro D.
AU - Pecorelli, Sergio
AU - Sartori, Enrico
AU - Bignotti, Eliana
AU - Odicino, Franco
AU - Ravaggi, Antonella
PY - 2017
Y1 - 2017
N2 - Background: Epithelial ovarian cancer (EOC) is a spectrum of different diseases, which makes their treatment a challenge. Forkhead box M1 (FOXM1) is an oncogene aberrantly expressed in many solid cancers including serous EOC, but its role in non-serous EOCs remains undefined. We examined FOXM1 expression and its correlation to prognosis across the three major EOC subtypes, and its role in tumorigenesis and chemo-resistance in vitro.
Methods: Gene signatures were generated by microarray for 14 clear-cell and 26 endometrioid EOCs, and 15 normal endometrium snap-frozen biopsies. Validation of FOXM1 expression was performed by RT-qPCR and immunohistochemistry in the same samples and additionally in 50 high-grade serous EOCs and in their most adequate normal controls (10 luminal fallopian tube and 20 ovarian surface epithelial brushings). Correlations of FOXM1 expression to clinic-pathological parameters and patients' prognosis were evaluated by Kaplan-Meier and Cox proportional-hazards analyses. OVCAR-3 and two novel deeply characterized EOC cell lines (EOC-CC1 and OSPC2, with clear-cell and serous subtype, respectively) were employed for in vitro studies. Effects of FOXM1 inhibition by transient siRNA transfection were evaluated on cell-proliferation, cell-cycle, colony formation, invasion, and response to conventional first-and second-line anticancer agents, and to the PARP-inhibitor olaparib. Gene signatures of FOXM1-silenced cell lines were generated by microarray and confirmed by RT-qPCR.
Results: A significant FOXM1 mRNA up-regulation was found in EOCs compared to normal controls. FOXM1 protein overexpression significantly correlated to serous histology (p = 0.001) and advanced FIGO stage (p = 0.004). Multivariate analyses confirmed FOXM1 protein overexpression as an independent indicator of worse disease specific survival in non-serous EOCs, and of shorter time to progression in platinum-resistant cases. FOXM1 downregulation in EOC cell lines inhibited cell growth and clonogenicity, and promoted the cytotoxic effects of platinum compounds, doxorubicin hydrochloride and olaparib. Upon FOXM1 knock-down in EOC-CC1 and OSPC2 cells, microarray and RT-qPCR analyses revealed the deregulation of several common and other unique subtype-specific FOXM1 putative targets involved in cell cycle, metastasis, DNA repair and drug response.
Conclusions: FOXM1 is up-regulated in all three major EOCs subtypes, and is a prognostic biomarker and a potential combinatorial therapeutic target in platinum resistant disease, irrespective of tumor histology.
AB - Background: Epithelial ovarian cancer (EOC) is a spectrum of different diseases, which makes their treatment a challenge. Forkhead box M1 (FOXM1) is an oncogene aberrantly expressed in many solid cancers including serous EOC, but its role in non-serous EOCs remains undefined. We examined FOXM1 expression and its correlation to prognosis across the three major EOC subtypes, and its role in tumorigenesis and chemo-resistance in vitro.
Methods: Gene signatures were generated by microarray for 14 clear-cell and 26 endometrioid EOCs, and 15 normal endometrium snap-frozen biopsies. Validation of FOXM1 expression was performed by RT-qPCR and immunohistochemistry in the same samples and additionally in 50 high-grade serous EOCs and in their most adequate normal controls (10 luminal fallopian tube and 20 ovarian surface epithelial brushings). Correlations of FOXM1 expression to clinic-pathological parameters and patients' prognosis were evaluated by Kaplan-Meier and Cox proportional-hazards analyses. OVCAR-3 and two novel deeply characterized EOC cell lines (EOC-CC1 and OSPC2, with clear-cell and serous subtype, respectively) were employed for in vitro studies. Effects of FOXM1 inhibition by transient siRNA transfection were evaluated on cell-proliferation, cell-cycle, colony formation, invasion, and response to conventional first-and second-line anticancer agents, and to the PARP-inhibitor olaparib. Gene signatures of FOXM1-silenced cell lines were generated by microarray and confirmed by RT-qPCR.
Results: A significant FOXM1 mRNA up-regulation was found in EOCs compared to normal controls. FOXM1 protein overexpression significantly correlated to serous histology (p = 0.001) and advanced FIGO stage (p = 0.004). Multivariate analyses confirmed FOXM1 protein overexpression as an independent indicator of worse disease specific survival in non-serous EOCs, and of shorter time to progression in platinum-resistant cases. FOXM1 downregulation in EOC cell lines inhibited cell growth and clonogenicity, and promoted the cytotoxic effects of platinum compounds, doxorubicin hydrochloride and olaparib. Upon FOXM1 knock-down in EOC-CC1 and OSPC2 cells, microarray and RT-qPCR analyses revealed the deregulation of several common and other unique subtype-specific FOXM1 putative targets involved in cell cycle, metastasis, DNA repair and drug response.
Conclusions: FOXM1 is up-regulated in all three major EOCs subtypes, and is a prognostic biomarker and a potential combinatorial therapeutic target in platinum resistant disease, irrespective of tumor histology.
KW - Epithelial ovarian cancer
KW - Subtype
KW - Epithelial ovarian cancer
KW - Subtype
UR - http://hdl.handle.net/10807/108517
U2 - 10.1186/s13046-017-0536-y
DO - 10.1186/s13046-017-0536-y
M3 - Article
SN - 0392-9078
VL - 36
SP - 1
EP - 18
JO - JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH
JF - JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH
ER -