Fluid Petri Nets for the Performance Evaluation of MapReduce and Spark Applications

Eugenio Gianniti, Alessandro Maria Rizzi, Enrico Barbierato, Marco Gribaudo, Danilo Ardagna*

*Autore corrispondente per questo lavoro

Risultato della ricerca: Contributo in libroContributo a convegno

Abstract

Big Data applications allow to successfully analyze large amounts of data not necessarily structured, though at the same time they present new challenges. For example, predicting the performance of frameworks such as Hadoop can be a costly task, hence the necessity to provide models that can be a valuable support for designers and developers. This paper provides a new contribution in studying a novel modeling approach based on fluid Petri nets to predict MapReduce jobs execution time. The experiments we performed at CINECA, the Italian supercomputing center, have shown that the achieved accuracy is within 16% of the actual measurements on average.
Lingua originaleEnglish
Titolo della pubblicazione ospitePerformance Evaluation Review
Pagine23-36
Numero di pagine14
Volume44
DOI
Stato di pubblicazionePubblicato - 2017
Evento10th EAI International Conference on Performance Evaluation Methodologies and Tools - Taormina
Durata: 25 ott 201628 ott 2016

Convegno

Convegno10th EAI International Conference on Performance Evaluation Methodologies and Tools
CittàTaormina
Periodo25/10/1628/10/16

Keywords

  • Fluid models, performance

Fingerprint

Entra nei temi di ricerca di 'Fluid Petri Nets for the Performance Evaluation of MapReduce and Spark Applications'. Insieme formano una fingerprint unica.

Cita questo