Flow in porous media with low dimensional fractures by employing enriched Galerkin method

T. Kadeethum, H. M. Nick, S. Lee, F. Ballarin, Francesco Ballarin

Risultato della ricerca: Contributo in rivistaArticolo in rivista

8 Citazioni (Scopus)


This paper presents the enriched Galerkin discretization for modeling fluid flow in fractured porous media using the mixed-dimensional approach. The proposed method has been tested against published benchmarks. Since fracture and porous media discontinuities can significantly influence single- and multi-phase fluid flow, the heterogeneous and anisotropic matrix permeability setting is utilized to assess the enriched Galerkin performance in handling the discontinuity within the matrix domain and between the matrix and fracture domains. Our results illustrate that the enriched Galerkin method has the same advantages as the discontinuous Galerkin method; for example, it conserves local and global fluid mass, captures the pressure discontinuity, and provides the optimal error convergence rate. However, the enriched Galerkin method requires much fewer degrees of freedom than the discontinuous Galerkin method in its classical form. The pressure solutions produced by both methods are similar regardless of the conductive or non-conductive fractures or heterogeneity in matrix permeability. This analysis shows that the enriched Galerkin scheme reduces the computational costs while offering the same accuracy as the discontinuous Galerkin so that it can be applied for large-scale flow problems. Furthermore, the results of a time-dependent problem for a three-dimensional geometry reveal the value of correctly capturing the discontinuities as barriers or highly-conductive fractures.
Lingua originaleEnglish
pagine (da-a)1-23
Numero di pagine23
RivistaAdvances in Water Resources
Stato di pubblicazionePubblicato - 2020


  • Enriched Galerkin
  • Finite element method
  • Fractured porous media
  • Heterogeneity
  • Local mass conservative
  • Mixed-dimensional


Entra nei temi di ricerca di 'Flow in porous media with low dimensional fractures by employing enriched Galerkin method'. Insieme formano una fingerprint unica.

Cita questo