Abstract
Finite mixtures are a flexible and common tool for modelling underlying group structures in the data. It is often the case that groups in the data present non-normal features, such as asymmetry and heavy tails. To accommodate these aspects, in this work, we first introduce a new distribution: the multivariate skew tail-inflated normal. Then, we use this distribution in a mixture modelling setting. An AECM algorithm is disclosed for maximum-likelihood parameter estimation. A simulation study is conducted to assess the goodness of the proposed algorithm in recovering the model parameters and data classification. Furthermore, we analyze two real datasets: one concerning log-returns of four cryptocurrencies, and the other regarding performance indicators of university courses across Italy.
Lingua originale | Inglese |
---|---|
pagine (da-a) | 1-20 |
Numero di pagine | 20 |
Rivista | Journal of Statistical Computation and Simulation |
Numero di pubblicazione | N/A |
DOI | |
Stato di pubblicazione | Pubblicato - 2025 |
All Science Journal Classification (ASJC) codes
- Statistica e Probabilità
- Modellazione e Simulazione
- Statistica, Probabilità e Incertezza
- Matematica Applicata
Keywords
- Mixture models
- model-based clustering
- skewed data