Finite mixtures of multivariate skew tail-inflated normal distributions

S. D. Tomarchio*, Luca Bagnato, A. Punzo

*Autore corrispondente per questo lavoro

Risultato della ricerca: Contributo in rivistaArticolo

Abstract

Finite mixtures are a flexible and common tool for modelling underlying group structures in the data. It is often the case that groups in the data present non-normal features, such as asymmetry and heavy tails. To accommodate these aspects, in this work, we first introduce a new distribution: the multivariate skew tail-inflated normal. Then, we use this distribution in a mixture modelling setting. An AECM algorithm is disclosed for maximum-likelihood parameter estimation. A simulation study is conducted to assess the goodness of the proposed algorithm in recovering the model parameters and data classification. Furthermore, we analyze two real datasets: one concerning log-returns of four cryptocurrencies, and the other regarding performance indicators of university courses across Italy.
Lingua originaleInglese
pagine (da-a)1-20
Numero di pagine20
RivistaJournal of Statistical Computation and Simulation
Numero di pubblicazioneN/A
DOI
Stato di pubblicazionePubblicato - 2025

All Science Journal Classification (ASJC) codes

  • Statistica e Probabilità
  • Modellazione e Simulazione
  • Statistica, Probabilità e Incertezza
  • Matematica Applicata

Keywords

  • Mixture models
  • model-based clustering
  • skewed data

Fingerprint

Entra nei temi di ricerca di 'Finite mixtures of multivariate skew tail-inflated normal distributions'. Insieme formano una fingerprint unica.

Cita questo