Abstract
In this article, we investigate several issues related to the use of the index\r\nS(G), known as the Zagreb index (see Gutman and Das, 2004) or “S-metric”\r\n(Alderson and Li, 2007). We present some new upper and lower bounds\r\nfor S(G), in terms of the degree sequence of G. Then, we concentrate on trees and prove that in trees with maximum S(G) the eigenvector ordering is coherent with the degree ordering; that is, degree central vertices are also eigenvector central. This confirms results given in Bonacich (2007). Further, we show that these trees\r\nhave minimum diameter and maximum spectral radius in the set of trees with a given degree sequence. A simple application to a company organizational network is provided.
| Lingua originale | Inglese |
|---|---|
| pagine (da-a) | 115-135 |
| Numero di pagine | 21 |
| Rivista | THE JOURNAL OF MATHEMATICAL SOCIOLOGY |
| Volume | 34 |
| Numero di pubblicazione | 2 |
| DOI | |
| Stato di pubblicazione | Pubblicato - 2010 |
| Pubblicato esternamente | Sì |
All Science Journal Classification (ASJC) codes
- Algebra e Teoria dei Numeri
- Scienze Sociali (varie)
- Sociologia e Scienze Politiche
Keywords
- bounds
- degree sequence
- diameter
- eigenvector centrality
- graphs