Exploring Neural Topic Modeling on a Classical Latin Corpus

Ginevra Martinelli, Paola Impicciché, Elisabetta Fersini, Francesco Mambrini, Marco Carlo Passarotti

Risultato della ricerca: Contributo in libroContributo a convegno

Abstract

The large availability of processable textual resources for Classical Latin has made it possible to study Latin literature through methods and tools that support distant reading. This paper describes a number of experiments carried out to test the possibility of investigating the thematic distribution of the Classical Latin corpus Opera Latina by means of topic modeling. For this purpose, we train, optimize and compare two neural models, Product-of-Experts LDA (ProdLDA) and Embedded Topic Model (ETM), opportunely revised to deal with the textual data from a Classical Latin corpus, to evaluate which one performs better both on the basis of topic diversity and topic coherence metrics, and from a human judgment point of view. Our results show that the topics extracted by neural models are coherent and interpretable and that they are significant from the perspective of a Latin scholar. The source code of the proposed model is available at https://github.com/MIND-Lab/LatinProdLDA.
Lingua originaleEnglish
Titolo della pubblicazione ospiteProceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Pagine6929-6934
Numero di pagine6
Stato di pubblicazionePubblicato - 2024
Evento2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) - TORINO -- ITA
Durata: 22 mag 202424 mag 2024

Convegno

Convegno2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
CittàTORINO -- ITA
Periodo22/5/2424/5/24

Keywords

  • Latin
  • Linguistic resources

Fingerprint

Entra nei temi di ricerca di 'Exploring Neural Topic Modeling on a Classical Latin Corpus'. Insieme formano una fingerprint unica.

Cita questo