Explicit models of ℓ_1-preduals and the weak* fixed point property in ℓ_1

Emanuele Casini, Enrico Miglierina, Lukasz Piasecki

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

Abstract

We provide a concrete isometric description of all the preduals of $\ell_1$ for which the standard basis in $\ell_1$ has a finite number of $w^*$-limit points. Then, we apply this result to give an example of an $\ell_1$-predual $X$ such that its dual $X^*$ lacks the weak$^*$ fixed point property for nonexpansive mappings (briefly, $w^*$-FPP), but $X$ does not contain an isometric copy of any hyperplane $W_{\alpha}$ of the space $c$ of convergent sequences such that $W_\alpha$ is a predual of $\ell_1$ and $W_\alpha^*$ lacks the $w^*$-FPP. This answers a question left open in the 2017 paper of the present authors.
Lingua originaleEnglish
pagine (da-a)39-51
Numero di pagine13
RivistaTopological Methods in Nonlinear Analysis
Volume63
DOI
Stato di pubblicazionePubblicato - 2024

Keywords

  • Nonexpansive mappings, w*-fixed point property, Lindenstrauss spaces

Fingerprint

Entra nei temi di ricerca di 'Explicit models of ℓ_1-preduals and the weak* fixed point property in ℓ_1'. Insieme formano una fingerprint unica.

Cita questo