Existence, Uniqueness and Regularity for the Second-Gradient Navier-Stokes Equations in Exterior Domains

Marco Degiovanni, Alfredo Marzocchi, Sara Mastaglio

Risultato della ricerca: Contributo in libroCapitolo

Abstract

We study the well-posedness of the problem\r\n⎧\r\n⎪\r\n⎨\r\n⎪\r\n⎩\r\n∂u\r\n∂t\r\n+ (Du)u + ∇p = νΔu − τΔΔu in ]0,+∞[×Ω,\r\ndivu = 0 in ]0,+∞[×Ω,\r\nu(t,x) =\r\n∂u\r\n∂n (t,x) = 0\r\non ]0,+∞[×∂Ω,\r\nu(0,x) = u 0 (x) in Ω,\r\nwhere u :]0,+∞[×Ω → R n is the velocity field, p :]0,+∞[×Ω → R is the pressure,\r\nν is the kinematical viscosity, τ the so-called hyperviscosity and Ω is a general\r\ndomain as for existence and uniqueness of the solution, and an exterior domain as\r\nfor regularity results.\r\nThis problem has been physically well motivated in the recent years as the\r\nsimplest case of an isotropic second-order fluid, i.e. a fluid whose power expended\r\ndepends on second derivatives of the velocity field.
Lingua originaleInglese
Titolo della pubblicazione ospiteWaves in Flows
EditoreBirkhäuser
Pagine181-202
Numero di pagine22
ISBN (stampa)978-3-030-68143-2
DOI
Stato di pubblicazionePubblicato - 2021

Keywords

  • Fluid Mechanics
  • Navier-Stokes equations

Fingerprint

Entra nei temi di ricerca di 'Existence, Uniqueness and Regularity for the Second-Gradient Navier-Stokes Equations in Exterior Domains'. Insieme formano una fingerprint unica.

Cita questo