TY - JOUR
T1 - Existence results for double-phase problems via Morse theory
AU - Perera, K.
AU - Squassina, Marco
PY - 2016
Y1 - 2016
N2 - We obtain nontrivial solutions for a class of double-phase problems using Morse\r\ntheory. In the absence of a direct sum decomposition, we use a cohomological local splitting to\r\nget an estimate of the critical groups at zero.
AB - We obtain nontrivial solutions for a class of double-phase problems using Morse\r\ntheory. In the absence of a direct sum decomposition, we use a cohomological local splitting to\r\nget an estimate of the critical groups at zero.
KW - Double phase problems
KW - Existence results
KW - Double phase problems
KW - Existence results
UR - https://publicatt.unicatt.it/handle/10807/87071
UR - https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85012092950&origin=inward
UR - https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85012092950&origin=inward
U2 - 10.1142/S0219199717500237
DO - 10.1142/S0219199717500237
M3 - Article
SN - 0219-1997
SP - N/A-N/A
JO - Communications in Contemporary Mathematics
JF - Communications in Contemporary Mathematics
IS - N/A
ER -