Abstract
In this paper we show that any increasing functional of the first k eigenvalues of the Dirichlet Laplacian admits a (quasi-)open minimizer among the subsets of R^N of unit measure. In particular, there exists such a minimizer which is bounded, where the bound depends on k and N, but not on the functional.
Lingua originale | English |
---|---|
pagine (da-a) | 433-453 |
Numero di pagine | 21 |
Rivista | JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES |
Volume | 100 |
DOI | |
Stato di pubblicazione | Pubblicato - 2013 |
Keywords
- Applied Mathematics
- Dirichlet Laplacian
- Eigenvalue problems
- Mathematics (all)
- Minimization of spectral functionals
- Shape optimization