Existence and concentration of positive solutions to generalized Chern-Simons-Schrödinger system with critical exponential growth

L. Shen, Marco Squassina*

*Autore corrispondente per questo lavoro

Risultato della ricerca: Contributo in rivistaArticolo

Abstract

We are concerned with a class of generalized Chern-Simons-Schrödinger systems {−Δu+λV(x)u+A0u+∑j=12Aj2u=f(u),∂1A2−∂2A1=−[Formula presented]|u|2,∂1A1+∂2A2=0,∂1A0=A2|u|2,∂2A0=−A1|u|2, where λ>0 denotes a sufficiently large parameter, V:R2→R admits a potential well Ω≜intV−1(0) and the nonlinearity f fulfills the critical exponential growth in the Trudinger-Moser sense at infinity. Under some suitable assumptions on V and f, based on variational method together with some new technical analysis, we are able to get the existence of positive solutions for some large λ>0, and the asymptotic behavior of the obtained solutions is also investigated when λ→+∞.
Lingua originaleInglese
pagine (da-a)1-29
Numero di pagine29
RivistaJournal of Mathematical Analysis and Applications
Volume543
Numero di pubblicazione2
DOI
Stato di pubblicazionePubblicato - 2025

All Science Journal Classification (ASJC) codes

  • Analisi
  • Matematica Applicata

Keywords

  • Chern-Simons-Schrödinger system
  • Critical exponential growth
  • Existence and concentration
  • Steep potential well
  • Trudinger-Moser inequality
  • Variational method

Fingerprint

Entra nei temi di ricerca di 'Existence and concentration of positive solutions to generalized Chern-Simons-Schrödinger system with critical exponential growth'. Insieme formano una fingerprint unica.

Cita questo