Ethyl-cellulose rumen-protected methionine alleviates inflammation and oxidative stress and improves neutrophil function during the periparturient period and early lactation in Holstein dairy cows

F. Batistel, J. M. Arroyo, C. I.M. Garces, Erminio Trevisi, C. Parys, M. A. Ballou, F. C. Cardoso, J. J. Loor

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

45 Citazioni (Scopus)

Abstract

The periparturient period is the most critical phase in the productive cycle of dairy cows and is characterized by impairment of the immune system. Our objective was to evaluate the effect of feeding ethyl-cellulose rumen-protected methionine (RPM) starting at d −28 from expected parturition through 60 d in milk on biomarkers of inflammation, oxidative stress, and liver function as well as leukocyte function. Sixty multiparous Holstein cows were used in a block design and assigned to either a control or the control plus ethyl-cellulose RPM (Mepron, Evonik Nutrition & Care GmbH). Mepron was supplied from −28 to 60 d in milk at a rate of 0.09% and 0.10% dry matter during the prepartum and postpartum period. That rate ensured that the ratio of Lys to Met in the metabolizable protein was close to 2.8:1. Blood samples from 15 clinically healthy cows per treatment were collected at d −30, −14, 1, 7, 21, 30, and 60 and analyzed for biomarkers of liver function, inflammation, and oxidative stress. Neutrophil and monocyte function in whole blood was measured in vitro at −14, 1, 7, 21, and 30 d in milk. The statistical model included the random effect of block and fixed effect of treatment, time, and its interaction. Compared with control, ethyl-cellulose RPM increased plasma cholesterol and paraoxonase after parturition. Among the inflammation biomarkers measured, ethyl-cellulose RPM led to greater albumin (negative acute-phase protein) and lower haptoglobin than control cows. Although concentration of IL-1β was not affected by treatments, greater IL-6 concentration was detected in response to ethyl-cellulose RPM. Cows supplemented with ethyl-cellulose RPM had greater plasma concentration of ferric-reducing antioxidant power, β-carotene, tocopherol, and total and reduced glutathione, whereas reactive oxygen metabolites were lower compared with control cows. Compared with control, ethyl-cellulose RPM enhanced neutrophil phagocytosis and oxidative burst. Overall, the results indicate that ethyl-cellulose RPM supply to obtain a Lys-to-Met ratio of 2.8:1 in the metabolizable protein during the periparturient period and early lactation is an effective approach to help mitigate oxidative stress and inflammation as well as enhance liver and neutrophil function in dairy cows.
Lingua originaleEnglish
pagine (da-a)480-490
Numero di pagine11
RivistaJournal of Dairy Science
Volume101
DOI
Stato di pubblicazionePubblicato - 2017

Keywords

  • Animal Science and Zoology
  • Food Science
  • Genetics
  • immunometabolism
  • methionine
  • transition period

Fingerprint

Entra nei temi di ricerca di 'Ethyl-cellulose rumen-protected methionine alleviates inflammation and oxidative stress and improves neutrophil function during the periparturient period and early lactation in Holstein dairy cows'. Insieme formano una fingerprint unica.

Cita questo