Abstract
The g-and-h distribution is able to handle well the complex behavior of loss data and applied to operational losses suggests that indirect inference estimators of VaR outperform quantile-based estimators.
Lingua originale | English |
---|---|
pagine (da-a) | 1255-1266 |
Numero di pagine | 12 |
Rivista | Quantitative Finance |
Volume | 19 |
DOI | |
Stato di pubblicazione | Pubblicato - 2019 |
Keywords
- Value-at-Risk
- g-and-h distribution
- indirect inference
- loss model