Abstract
Whether human IL-10-producing regulatory T cells (“Tr1”) represent a distinct differentiation lineage or an unstable activation stage remains a key unsolved issue. Here, we report that Eomesodermin (Eomes) acted as a lineage-defining transcription factor in human IFN-γ/IL-10 coproducing Tr1-like cells. In vivo occurring Tr1-like cells expressed Eomes, and were clearly distinct from all other CD4 + T-cell subsets, including conventional cytotoxic CD4 + T cells. They expressed Granzyme (Gzm) K, but had lost CD40L and IL-7R expression. Eomes antagonized the Th17 fate, and directly controlled IFN-γ and GzmK expression. However, Eomes binding to the IL-10 promoter was not detectable in human CD4 + T cells, presumably because critical Tbox binding sites of the mouse were not conserved. A precommitment to a Tr1-like fate, i.e. concominant induction of Eomes, GzmK, and IFN-γ, was promoted by IL-4 and IL-12-secreting myeloid dendritic cells. Consistently, Th1 effector memory cells contained precommitted Eomes + GzmK + T cells. Stimulation with T-cell receptor (TCR) agonists and IL-27 promoted the generation of Tr1-like effector cells by inducing switching from CD40L to IL-10. Importantly, CD4 + Eomes + T-cell subsets were present in lymphoid and nonlymphoid tissues, and their frequencies varied systemically in patients with inflammatory bowel disease and graft-versus-host disease. We propose that Eomes + Tr1-like cells are effector cells of a unique GzmK-expressing CD4 + T-cell subset.
Lingua originale | English |
---|---|
pagine (da-a) | 96-111 |
Numero di pagine | 16 |
Rivista | European Journal of Immunology |
Volume | 49 |
DOI | |
Stato di pubblicazione | Pubblicato - 2019 |
Keywords
- Differentiation
- EOMES
- Th17
- Regulatory T cells
- Granzyme K