Enhancing Financial Time Series Prediction with Quantum-Enhanced Synthetic Data Generation: A Case Study on the S&P 500 Using a Quantum Wasserstein Generative Adversarial Network Approach with a Gradient Penalty

Filippo Orlandi, Enrico Barbierato*, Alice Gatti

*Autore corrispondente per questo lavoro

Risultato della ricerca: Contributo in rivistaArticolo in rivista

Fingerprint

Entra nei temi di ricerca di 'Enhancing Financial Time Series Prediction with Quantum-Enhanced Synthetic Data Generation: A Case Study on the S&P 500 Using a Quantum Wasserstein Generative Adversarial Network Approach with a Gradient Penalty'. Insieme formano una fingerprint unica.

Engineering

Computer Science

Earth and Planetary Sciences