Eigenvalues for double phase variational problems

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

64 Citazioni (Scopus)

Abstract

We study an eigenvalue problem in the framework of double phase variational integrals, and we introduce a sequence of nonlinear eigenvalues by a minimax procedure. We establish a continuity result for the nonlinear eigenvalues with respect to the variations of the phases. Furthermore, we investigate the growth rate of this sequence and get a Weyl-type law consistent with the classical law for the p-Laplacian operator when the two phases agree.
Lingua originaleEnglish
pagine (da-a)1917-1959
Numero di pagine43
RivistaAnnali di Matematica Pura ed Applicata
Volume195
DOI
Stato di pubblicazionePubblicato - 2016

Keywords

  • Double phase problems
  • Eigenvalues

Fingerprint

Entra nei temi di ricerca di 'Eigenvalues for double phase variational problems'. Insieme formano una fingerprint unica.

Cita questo