Abstract
We study an eigenvalue problem in the framework of double phase variational
integrals, and we introduce a sequence of nonlinear eigenvalues by a minimax procedure. We
establish a continuity result for the nonlinear eigenvalues with respect to the variations of the
phases. Furthermore, we investigate the growth rate of this sequence and get a Weyl-type law
consistent with the classical law for the p-Laplacian operator when the two phases agree.
Lingua originale | English |
---|---|
pagine (da-a) | 1917-1959 |
Numero di pagine | 43 |
Rivista | Annali di Matematica Pura ed Applicata |
Volume | 195 |
DOI | |
Stato di pubblicazione | Pubblicato - 2016 |
Keywords
- Double phase problems
- Eigenvalues