Abstract
We introduce a modified Kirchhoff-Plateau problem adding an energy term to penalize shape modifications of the cross-sections appended to the elastic midline. In a specific setting, we characterize quantitatively some properties of minimizers. Indeed, choosing three different geometrical shapes for the cross-section, we derive Euler-Lagrange equations for a planar version of the Kirchhoff-Plateau problem. We show that in the physical range of the parameters, there exists a unique critical point satisfying the imposed constraints. Finally, we analyze the effects of the surface tension on the shape of the cross-sections at the equilibrium.
Lingua originale | English |
---|---|
pagine (da-a) | 221-240 |
Numero di pagine | 20 |
Rivista | Bolletino dell Unione Matematica Italiana |
Volume | 17 |
DOI | |
Stato di pubblicazione | Pubblicato - 2023 |
Keywords
- Kirchhoff-Plateau problem
- Euler-Lagrange equations
- Elasticity
- Minimizers
- Surface tension