Effects of surface tension and elasticity on critical points of the Kirchhoff–Plateau problem

Giulia Bevilacqua*, Chiara Lonati

*Autore corrispondente per questo lavoro

Risultato della ricerca: Contributo in rivistaArticolo in rivista

Abstract

We introduce a modified Kirchhoff-Plateau problem adding an energy term to penalize shape modifications of the cross-sections appended to the elastic midline. In a specific setting, we characterize quantitatively some properties of minimizers. Indeed, choosing three different geometrical shapes for the cross-section, we derive Euler-Lagrange equations for a planar version of the Kirchhoff-Plateau problem. We show that in the physical range of the parameters, there exists a unique critical point satisfying the imposed constraints. Finally, we analyze the effects of the surface tension on the shape of the cross-sections at the equilibrium.
Lingua originaleEnglish
pagine (da-a)221-240
Numero di pagine20
RivistaBolletino dell Unione Matematica Italiana
Volume17
DOI
Stato di pubblicazionePubblicato - 2023

Keywords

  • Kirchhoff-Plateau problem
  • Euler-Lagrange equations
  • Elasticity
  • Minimizers
  • Surface tension

Fingerprint

Entra nei temi di ricerca di 'Effects of surface tension and elasticity on critical points of the Kirchhoff–Plateau problem'. Insieme formano una fingerprint unica.

Cita questo