Ecological Velocity Planning through Signalized Intersections: A Deep Reinforcement Learning Approach

Andrea Pozzi*, Sangjae Bae, Yongkeun Choi, Francesco Borrelli, Davide M. Raimondo, Scott Moura

*Autore corrispondente per questo lavoro

Risultato della ricerca: Contributo in libroContributo a convegno

Abstract

The use of infrastructure-to-vehicle communication technologies can enable improved energy efficient autonomous driving. Traditional ecological velocity planning methods have high computational burden, particularly when plug-in hybrid electric vehicles are considered. Consequently, in order to retrieve an optimal velocity profile in real time, it is necessary to rely on significant approximations.In this paper, the aforementioned issue is addressed by exploiting deep reinforcement learning in order to learn an eco-driving velocity planner for a plug-in hybrid electric vehicle within a model-free approach. Moreover, we incorporate a state-of-the-art safety controller based on model predictive control to guarantee traffic light compliance. Statistical analysis of the simulation results demonstrate that the RL controller outperforms two benchmark controllers, and it generalizes well across a variety of intersection configurations.
Lingua originaleEnglish
Titolo della pubblicazione ospiteProceedings of the IEEE Conference on Decision and Control
Pagine245-252
Numero di pagine8
Volume2020-
DOI
Stato di pubblicazionePubblicato - 2020
Evento59th IEEE Conference on Decision and Control, CDC 2020 - Korea
Durata: 14 dic 202018 dic 2020

Serie di pubblicazioni

NomePROCEEDINGS OF THE IEEE CONFERENCE ON DECISION & CONTROL

Convegno

Convegno59th IEEE Conference on Decision and Control, CDC 2020
CittàKorea
Periodo14/12/2018/12/20

Keywords

  • Connected autonomous vehicles
  • Deep reinforcement learning

Fingerprint

Entra nei temi di ricerca di 'Ecological Velocity Planning through Signalized Intersections: A Deep Reinforcement Learning Approach'. Insieme formano una fingerprint unica.

Cita questo