Dissimilarity measure for ranking data via mixture of copulae

Andrea Bonanomi*, Nai Ruscone Marta, Silvia Angela Osmetti

*Autore corrispondente per questo lavoro

Risultato della ricerca: Contributo in rivistaArticolopeer review

2 Citazioni (Scopus)

Abstract

We define a new distance measure for ranking data using a mixture of copula\r\nfunctions. Our distance measure evaluates the dissimilarity of subjects’ ranking preferences to segment them via hierarchical cluster analysis. The proposed distance\r\nmeasure builds upon Spearman grade correlation coefficient on a copula transformation of rank denoting the level of importance assigned by subjects on the\r\nclassification of k objects. These mixtures of copulae enable flexible modeling of\r\nthe different types of dependence structures found in data and the consideration of\r\nvarious circumstances in the classification process. For example, by using mixtures\r\nof copulae with lower and upper tail dependence, we can emphasize the agreement\r\non extreme ranks when they are considered important.
Lingua originaleInglese
pagine (da-a)412-425
Numero di pagine14
RivistaStatistical Analysis and Data Mining
Volume12
Numero di pubblicazione5
DOI
Stato di pubblicazionePubblicato - 2019

All Science Journal Classification (ASJC) codes

  • Analisi
  • Sistemi Informativi
  • Informatica Applicata

Keywords

  • distance measure
  • hierarchical cluster analysis
  • mixture of copulae
  • ranking data

Fingerprint

Entra nei temi di ricerca di 'Dissimilarity measure for ranking data via mixture of copulae'. Insieme formano una fingerprint unica.

Cita questo