Different binding thermodynamics of Ni+2, Cu+2 and Zn+2 to bacitracin A1 determined by capillary electrophoresis

Massimo Castagnola, Diana Valeria Rossetti, Rosanna Inzitari, Alessandro Lupi, Cecilia Zuppi, Tiziana Cabras, Maria Benedetta Fadda, Giuseppina Onnis, Raffaele Petruzzelli, Bruno Giardina, Irene Messana

Risultato della ricerca: Contributo in rivistaArticolo in rivista

Abstract

Thermodynamics of the binding of Ni2+, Cu2+ and Zn2+ to bacitracin A(1) was studied by capillary electrophoresis measuring the peptide effective mobility at different pH in the presence of increasing concentration of the three ligands. The affinity follows the order Ni2+ > Cu2+ > Zn2+, with association constant values of (2.3+/- 0.1) X 10(4), (4.9+/-0.2) x 10(3), and (1.5 +/- 0.1) x 10(3) m(-1), respectively. The only model able to rationalize mobility data implies that metal ion binds to the P-O peptide form. Moreover, mobility values indicated a change of bacitracin A(1) acidic properties on Ni2+ and Cu2+ binding, with a shift of the pK(a), of N-terminal Ile-1 from 7.6 to about 5 and of the pK(a) of the delta-amino group Of D-Orn-7 from 9.7 to about 7. Even though on Zn2+ binding a shift of the N-terminal Ile-1 pK(a) was observed, restrictions in the pH range suitable for investigation, due to precipitation phenomena, did not allow establish if the shift Of D-Orn-7 lateral chain pK(a) also occurred. Nonetheless, if present, the shift should be limited to the 7.8-9.7 range. Mobility data indicated that the Stokes radius of the complexes is ca. 3 Angstrom lower than that of the free peptide. The present results indicate that metal-ion binding to bacitracin A(1) is more complex than previously assumed.
Lingua originaleEnglish
pagine (da-a)846-852
Numero di pagine7
RivistaElectrophoresis
Stato di pubblicazionePubblicato - 2004

Keywords

  • BACITRACIN
  • CAPILLARY
  • ELECTROPHORESIS

Fingerprint

Entra nei temi di ricerca di 'Different binding thermodynamics of Ni+2, Cu+2 and Zn+2 to bacitracin A1 determined by capillary electrophoresis'. Insieme formano una fingerprint unica.

Cita questo