Abstract
We consider the minimization of a functional of the calculus of variations, under assumptions that are diffeomorphism invariant. In particular, a nonuniform coercivity condition needs to be considered. We show that the direct methods of the calculus of variations can be applied in a generalized Sobolev space, which is in turn diffeomorphism invariant. Under a suitable (invariant) assumption, the minima in this larger space belong to a usual Sobolev space and are bounded.
Lingua originale | Inglese |
---|---|
pagine (da-a) | 1-23 |
Numero di pagine | 23 |
Rivista | Mathematics |
Volume | 13 |
Numero di pubblicazione | 3 |
DOI | |
Stato di pubblicazione | Pubblicato - 2025 |
All Science Journal Classification (ASJC) codes
- Informatica (varie)
- Matematica generale
- Ingegneria (varie)
Keywords
- Calculus of variations
- Direct methods
- Invariance by diffeomorphism
- Quasilinear elliptic equations