Dietary Protein and Potassium, Diet-Dependent Net Acid Load, and Risk of Incident Kidney Stones

Pietro Manuel Ferraro, Ernest I. Mandel, Gary C. Curhan, Giovanni Gambaro, Eric N. Taylor

Risultato della ricerca: Contributo in rivistaArticolo in rivista

40 Citazioni (Scopus)

Abstract

BACKGROUND AND OBJECTIVES: Protein and potassium intake and the resulting diet-dependent net acid load may affect kidney stone formation. It is not known whether protein type or net acid load is associated with risk of kidney stones. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: We prospectively examined intakes of protein (dairy, nondairy animal, and vegetable), potassium, and animal protein-to-potassium ratio (an estimate of net acid load) and risk of incident kidney stones in the Health Professionals Follow-Up Study (n=42,919), the Nurses' Health Study I (n=60,128), and the Nurses' Health Study II (n=90,629). Multivariable models were adjusted for age, body mass index, diet, and other factors. We also analyzed cross-sectional associations with 24-hour urine (n=6129). RESULTS: During 3,108,264 person-years of follow-up, there were 6308 incident kidney stones. Dairy protein was associated with lower risk in the Nurses' Health Study II (hazard ratio for highest versus lowest quintile, 0.84; 95% confidence interval, 0.73 to 0.96; P value for trend <0.01). The hazard ratios for nondairy animal protein were 1.15 (95% confidence interval, 0.97 to 1.36; P value for trend =0.04) in the Health Professionals Follow-Up Study and 1.20 (95% confidence interval, 0.99 to 1.46; P value for trend =0.06) in the Nurses' Health Study I. Potassium intake was associated with lower risk in all three cohorts (hazard ratios from 0.44 [95% confidence interval, 0.36 to 0.53] to 0.67 [95% confidence interval, 0.57 to 0.78]; P values for trend <0.001). Animal protein-to-potassium ratio was associated with higher risk (P value for trend =0.004), even after adjustment for animal protein and potassium. Higher dietary potassium was associated with higher urine citrate, pH, and volume (P values for trend <0.002). CONCLUSIONS: Kidney stone risk may vary by protein type. Diets high in potassium or with a relative abundance of potassium compared with animal protein could represent a means of stone prevention.
Lingua originaleEnglish
pagine (da-a)N/A-N/A
RivistaCLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY
DOI
Stato di pubblicazionePubblicato - 2016

Keywords

  • Body Mass Index
  • Citrates
  • Citric Acid
  • Cross-Sectional Studies
  • Diet
  • Dietary Proteins
  • Epidemiologic Studies
  • Follow-Up Studies
  • Kidney Calculi
  • NEAP
  • Potassium, Dietary
  • Risk
  • Vegetables
  • acid load
  • kidney stones
  • nutrition
  • potassium
  • protein
  • urolithiasis

Fingerprint

Entra nei temi di ricerca di 'Dietary Protein and Potassium, Diet-Dependent Net Acid Load, and Risk of Incident Kidney Stones'. Insieme formano una fingerprint unica.

Cita questo