TY - JOUR
T1 - Derivation of the HOMFLYPT knot polynomial via helicity and geometric quantization
AU - Miti, Antonio Michele
AU - Spera, Mauro
PY - 2021
Y1 - 2021
N2 - In this note we propose a geometric quantization interpretation of the HOMFLYPT polynomial, taking inspiration from the Liu-Ricca hydrodynamical approach to the latter and building on the Besana-S. symplectic approach to framing via Brylinski’s manifold of mildly singular links.
AB - In this note we propose a geometric quantization interpretation of the HOMFLYPT polynomial, taking inspiration from the Liu-Ricca hydrodynamical approach to the latter and building on the Besana-S. symplectic approach to framing via Brylinski’s manifold of mildly singular links.
KW - Knot polynomials, symplectic geometry, Lagrangian submanifolds, hydrodynamics, geometric quantization, Maslov index.
KW - Knot polynomials, symplectic geometry, Lagrangian submanifolds, hydrodynamics, geometric quantization, Maslov index.
UR - http://hdl.handle.net/10807/180270
U2 - 10.1007/s40574-020-00254-5
DO - 10.1007/s40574-020-00254-5
M3 - Article
SN - 1972-6724
VL - 14
SP - 269
EP - 284
JO - BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA
JF - BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA
ER -