Deep-MPC: A DAGGER-Driven Imitation Learning Strategy for Optimal Constrained Battery Charging

Jorge Espin, Dong Zhang, Daniele Toti, Andrea Pozzi

Risultato della ricerca: Contributo in libroContributo a convegno

Abstract

In the realm of battery charging, several complex aspects demand meticulous attention, including thermal management, capacity degradation, and the need for rapid charging while maintaining safety and battery lifespan. By employing the imitation learning paradigm, this manuscript introduces an innovative solution to confront the inherent challenges often associated with conventional predictive control strategies for constrained battery charging. A significant contribution of this study lies in the adaptation of the Dataset Aggregation (DAGGER) algorithm to address scenarios where battery parameters are uncertain, and internal states are unobservable. Results drawn from a practical battery simulator that incorporates an electrochemical model highlight substantial improvements in battery charging performance, particularly in meeting all safety constraints and outperforming traditional strategies in computational processing.
Lingua originaleEnglish
Titolo della pubblicazione ospiteProceedings of the American Control Conference
Pagine2224-2229
Numero di pagine6
DOI
Stato di pubblicazionePubblicato - 2024
Evento2024 American Control Conference, ACC 2024 - Toronto, Canada
Durata: 10 lug 202412 lug 2024

Serie di pubblicazioni

NomePROCEEDINGS OF THE AMERICAN CONTROL CONFERENCE

Convegno

Convegno2024 American Control Conference, ACC 2024
CittàToronto, Canada
Periodo10/7/2412/7/24

Keywords

  • Battery Charging
  • DAGGER
  • Model Predictive Control
  • Lithium-ion Battery
  • Imitation Learning

Fingerprint

Entra nei temi di ricerca di 'Deep-MPC: A DAGGER-Driven Imitation Learning Strategy for Optimal Constrained Battery Charging'. Insieme formano una fingerprint unica.

Cita questo