Critical point index for vector functions and vector optimization

Enrico Miglierina, E. Miglierina, E. Molho, M. Rocca

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

6 Citazioni (Scopus)

Abstract

In this work, we study the critical points of vector functions from R^n to R^m with n ≥ m, following the definition introduced by Smale in the context of vector optimization. The local monotonicity properties of a vector function around a critical point which are invariant with respect to local coordinate changes are considered. We propose a classification of critical points through the introduction of a generalized Morse index for a critical point, consisting of a triplet of nonnegative integers. The proposed index is based on the sign of an appropriate invariant vector-valued second order differential.
Lingua originaleEnglish
pagine (da-a)479-496
Numero di pagine18
RivistaJournal of Optimization Theory and Applications
Volume138
DOI
Stato di pubblicazionePubblicato - 2008

Keywords

  • Critical points
  • Morse index
  • Second-order differentials
  • Vector optimization

Fingerprint Entra nei temi di ricerca di 'Critical point index for vector functions and vector optimization'. Insieme formano una fingerprint unica.

Cita questo