TY - JOUR
T1 - Cover crops during transition to no-till maintain yield and enhance soil fertility in intensive agro-ecosystems
AU - Boselli, Roberta
AU - Fiorini, Andrea
AU - Santelli, Stefano
AU - Ardenti, Federico
AU - Capra, Federico
AU - Maris, Stefania Codruta
AU - Tabaglio, Vincenzo
PY - 2020
Y1 - 2020
N2 - Introducing no-till and cover crops in arable agro-ecosystems leads to the restoration of soil fertility, through the increase of soil organic matter (SOM), soil total nitrogen (STN), and available phosphorus (P), therefore maintaining or enhancing crop yield and reducing costs. Although the effects of those practices have been widely examined, many studies show conflicting results and little is known about the combined effects of no-till (NT) and cover crops (CCs) under intensive arable cropland in the Po Valley (Northern Italy). The objectives of this study were: (i) to evaluate if NT management coupled with CCs negatively affects yields during the transition period and how yields evolve; (ii) to assess SOM, STN, and P dynamics in the 60-cm soil depth layer; and (iii) to evaluate the effects of different types of winter cover crops on yield and soil parameters. A six-year field experiment was established in Piacenza, on a silty-clay soil under temperate climate conditions. The crop sequence was: winter wheat, maize, maize, soybean, winter wheat, and maize. The four experimental treatments were: (1) conventional tillage (CT) as control; (2) NT with CC of rye (NT-R); (3) NT with CC of hairy vetch (NT-V); and (4) NT with a mixture of CCs (rye, hairy vetch, crimson clover, Italian rye-grass and radish) [NT-M]). Dry biomass yield of CCs ranged between 2.2 and 3.1 Mg ha−1 for rye; 1.9 and 3.0 Mg ha−1 for hairy vetch; and 1.9 and 3.2 Mg ha−1 for mixture. In the present study, yields of winter wheat, maize, and soybean were generally not reduced with NT-CCs since the first year after conversion. The different composition and thickness of cover crop mulch showed an opposite yield response to rainfall pattern: under NT-R, a negative correlation was observed between grain yield and rainfall, while under NT-V this correlation was positive. After six years, SOM and STN concentrations in the 0-30 cm soil layer increased in NT-CCs. SOM concentration was +30%, +23% and +20% higher than CT for NT-R, NT-M and NT-V, respectively. STN was +28% higher under NT-R and NT-V, and +21% higher under NT-M, than CT. Conversely, P concentration was not influenced by the NT-CCs system, although we observed a tendency to increase under NT-V. In the 30-60 cm soil, layer, the tillage systems did not affect SOM and STN. We concluded that introducing NT with winter CCs into intensive arable agricultural systems is an effective strategy for enhancing soil fertility in fine-textured soils under temperate climates, without penalizing yields.
AB - Introducing no-till and cover crops in arable agro-ecosystems leads to the restoration of soil fertility, through the increase of soil organic matter (SOM), soil total nitrogen (STN), and available phosphorus (P), therefore maintaining or enhancing crop yield and reducing costs. Although the effects of those practices have been widely examined, many studies show conflicting results and little is known about the combined effects of no-till (NT) and cover crops (CCs) under intensive arable cropland in the Po Valley (Northern Italy). The objectives of this study were: (i) to evaluate if NT management coupled with CCs negatively affects yields during the transition period and how yields evolve; (ii) to assess SOM, STN, and P dynamics in the 60-cm soil depth layer; and (iii) to evaluate the effects of different types of winter cover crops on yield and soil parameters. A six-year field experiment was established in Piacenza, on a silty-clay soil under temperate climate conditions. The crop sequence was: winter wheat, maize, maize, soybean, winter wheat, and maize. The four experimental treatments were: (1) conventional tillage (CT) as control; (2) NT with CC of rye (NT-R); (3) NT with CC of hairy vetch (NT-V); and (4) NT with a mixture of CCs (rye, hairy vetch, crimson clover, Italian rye-grass and radish) [NT-M]). Dry biomass yield of CCs ranged between 2.2 and 3.1 Mg ha−1 for rye; 1.9 and 3.0 Mg ha−1 for hairy vetch; and 1.9 and 3.2 Mg ha−1 for mixture. In the present study, yields of winter wheat, maize, and soybean were generally not reduced with NT-CCs since the first year after conversion. The different composition and thickness of cover crop mulch showed an opposite yield response to rainfall pattern: under NT-R, a negative correlation was observed between grain yield and rainfall, while under NT-V this correlation was positive. After six years, SOM and STN concentrations in the 0-30 cm soil layer increased in NT-CCs. SOM concentration was +30%, +23% and +20% higher than CT for NT-R, NT-M and NT-V, respectively. STN was +28% higher under NT-R and NT-V, and +21% higher under NT-M, than CT. Conversely, P concentration was not influenced by the NT-CCs system, although we observed a tendency to increase under NT-V. In the 30-60 cm soil, layer, the tillage systems did not affect SOM and STN. We concluded that introducing NT with winter CCs into intensive arable agricultural systems is an effective strategy for enhancing soil fertility in fine-textured soils under temperate climates, without penalizing yields.
KW - crop yield
KW - no-till
KW - soil organic matter
KW - soil total nitrogen
KW - winter cover crops
KW - crop yield
KW - no-till
KW - soil organic matter
KW - soil total nitrogen
KW - winter cover crops
UR - http://hdl.handle.net/10807/161140
U2 - 10.1016/j.fcr.2020.107871
DO - 10.1016/j.fcr.2020.107871
M3 - Article
SN - 0378-4290
VL - 255
SP - 1
EP - 11
JO - Field Crops Research
JF - Field Crops Research
ER -