Abstract
The numerical minimization of the functional
$F(u)=\int_\Omega \phi(x,\nu_u)|Du|+\int_{\partial\Omega\mu u -\int_\Omega\kappa u$,
$u\in BV(\Omega,{-1,1})$, is addressed. The function $\phi$ is continuous, has linear growth, and is convex and positively homogeneous of degree one in the second variable.
We prove that $F$ can be equivalently
minimized on the convex set $BV(\Omega,[-1,1]$ and then regularized
with a sequence $\{F_\epsilon(u)\}_\epsilon$ of strictly convex functionals.
Then both $F$ and $F_\epsilon$ can be discretized by continuous linear
finite elements. The convexity property of the functionals on $BV(\Omega,[-1,1])$ is useful in the numerical minimization of $F$. The $\Gamma$-convergence of the discrete functionals to F, as well as the
compactness of any sequence of discrete absolute minimizers, are proven.
Lingua originale | English |
---|---|
pagine (da-a) | 177-187 |
Numero di pagine | 11 |
Rivista | ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI |
Stato di pubblicazione | Pubblicato - 1994 |
Keywords
- anisotropy
- convex minimization
- prescribed curvature