Convergence rate of general entropic optimal transport costs

Guillaume Carlier, Paul Pegon, Luca Tamanini*

*Autore corrispondente per questo lavoro

Risultato della ricerca: Contributo in rivistaArticolo in rivista

Abstract

We investigate the convergence rate of the optimal entropic cost vε to the optimal transport cost as the noise parameter ε ↓ 0. We show that for a large class of cost functions c on Rd×Rd (for which optimal plans are not necessarily unique or induced by a transport map) and compactly supported and L∞ marginals, one has vε − v0 = d/2 εlog(1/ε) + O(ε). Upper bounds are obtained by a block approximation strategy and an integral variant of Alexandrov’s theorem. Under an infinitesimal twist condition on c, i.e. invertibility of ∇^2_xy c(x, y), we get the lower bound by establishing a quadratic detachment of the duality gap in d dimensions thanks to Minty’s trick.
Lingua originaleEnglish
pagine (da-a)N/A-N/A
RivistaCalculus of Variations and Partial Differential Equations
Volume62
DOI
Stato di pubblicazionePubblicato - 2023

Keywords

  • Schrödinger problem
  • convex analysis
  • entropic regularization
  • entropy dimension
  • optimal transport

Fingerprint

Entra nei temi di ricerca di 'Convergence rate of general entropic optimal transport costs'. Insieme formano una fingerprint unica.

Cita questo