Convergence and Mixing in Markov Chain Monte Carlo: Advanced Algorithms and Latest Developments

Stefano Peluso, Antonietta Mira

Risultato della ricerca: Contributo in libroVoce in dizionario / enciclopedia

Abstract

We survey possible strategies to improve the performance of Markov chain Monte Carlo methods either by reducing the asymptotic variance of the resulting estimators or by increasing the speed of convergence to stationarity. Recent advances in the direction of the pseudomarginal approach, Gradient-based algorithms and Approximate Bayesian Computation are also highlighted.
Lingua originaleEnglish
Titolo della pubblicazione ospiteEncyclopedia of Statistics in Quality and Reliability
PagineN/A
DOI
Stato di pubblicazionePubblicato - 2015

Keywords

  • Adaptive MCMC
  • Approximate Bayesian Computation
  • Auxiliary variables
  • Delayed rejection
  • Langevin diffusions
  • Particle MCMC
  • Particle filters
  • Population Monte Carlo
  • Pseudomarginal approach
  • Simulated tempering
  • Slice sampler
  • hybrid Monte Carlo

Fingerprint

Entra nei temi di ricerca di 'Convergence and Mixing in Markov Chain Monte Carlo: Advanced Algorithms and Latest Developments'. Insieme formano una fingerprint unica.

Cita questo