Abstract
Small area estimators associated with M-quantile regression methods have been recently
proposed by Chambers and Tzavidis (2006). These estimators do not rely on normality or
other distributional assumptions, do not require explicit modelling of the random components
of the model and are robust with respect to outliers and influential observations. In this article
we consider two remaining problems which are relevant to practical applications. The first is
benchmarking, that is the consistency of a collection of small area estimates with a reliable
estimate obtained according to ordinary design-based methods for the union of the areas. The
second is the correction of the under/over-shrinkage of small area estimators. In fact, it is often
the case that, if we consider a collection of small area estimates, they misrepresent the
variability of the underlying “ensemble” of population parameters. We propose benchmarked
M-quantile estimators to solve the first problem, while for the second we propose an algorithm
that is quite similar to the one used to obtain Constrained Empirical Bayes estimators, but that,
consistently with the principles of M-estimation, does not make use of distributional
assumptions and tries to achieve robustness with respect to the presence of outliers. The article
is essentially about point estimation; we also introduce estimators of the mean squared error,
but we do not deal with interval estimation.
Lingua originale | English |
---|---|
pagine (da-a) | 89-106 |
Numero di pagine | 18 |
Rivista | Journal of Official Statistics |
Volume | 28 |
Stato di pubblicazione | Pubblicato - 2012 |
Keywords
- Over-shrinkag
- benchmarking
- robust estimation