Concentrating normalized solutions to planar Schrödinger–Poisson system with steep potential well: critical exponential case

Liejun Shen, Marco Squassina*

*Autore corrispondente per questo lavoro

Risultato della ricerca: Contributo in rivistaArticolo in rivista

Abstract

In this paper, we study the following class of planar Schrödinger–Poisson problems (Formula presented.) where a>0, μ∈R is an unknown parameter appearing as a Lagrange multiplier, λ,γ,κ>0 are parameters, V∈C(R2,R+) admits a potential well Ω≜intV-1(0) and f is a continuous function having critical exponential growth at infinity in the Trudinger-Moser sense. Owing to some technical tricks adopted in Alves and Shen (On existence of positive solutions to some classes of elliptic problems in the hyperbolic space, Submitted for publication), Shen and Squassina (Existence and concentration of normalized solutions for p-Laplacian equations with logarithmic nonlinearity, http://arxiv.org/abs/2403.09366), we are able to obtain the existence and concentrating behavior of positive normalized solutions for sufficiently large λ using variational method.
Lingua originaleEnglish
pagine (da-a)1-31
Numero di pagine31
RivistaNODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS
Volume32
DOI
Stato di pubblicazionePubblicato - 2025

Keywords

  • Critical exponential growth
  • L
  • 2
  • Variational methods
  • Planar Schrödinger–Poisson equation
  • Positive normalized solutions
  • Steep potential well
  • -supercritical growth

Fingerprint

Entra nei temi di ricerca di 'Concentrating normalized solutions to planar Schrödinger–Poisson system with steep potential well: critical exponential case'. Insieme formano una fingerprint unica.

Cita questo