TY - JOUR
T1 - Comparative analysis of the in vivo angiogenic properties of stable prostacyclin analogs: a possible role for peroxisome proliferator-activated receptors.
AU - Pola, Roberto
AU - Gaetani, Eleonora
AU - Flex, Andrea
AU - Aprahamian, T. R.
AU - Bosch-Marcé, M.
AU - Losordo, D. W.
AU - Smith, R. C.
AU - Pola, Paolo
PY - 2004
Y1 - 2004
N2 - OBJECTIVE: Until recently, prostacyclin (PGI2) biological activities were thought to be exclusively mediated by cell surface receptors named IP. Recent studies have instead identified a novel pathway of PGI2 signaling, occurring through activation of peroxisome proliferator-activated receptors (PPARs) located in the nucleus. The availability of stable PGI2 analogs with different affinity for IP receptors and PPARs provides the possibility to test the importance and function of this dual pathway in vitro and in vivo. In this study, the in vivo angiogenic properties of different PGI2 analogs and the potential relationship between PPAR-mediated pathways, vascular endothelial growth factor (VEGF), and angiogenesis were investigated. METHODS AND RESULTS: By using the murine corneal model of angiogenesis, we found that PGI2 analogs able to act on nuclear PPARs, such as iloprost and carbaprostacyclin (cPGI), induce angiogenesis in vivo. In contrast, cicaprost, a PGI2 analog that only acts on IP receptors, has no in vivo angiogenic activity. Interestingly, angiogenesis induced by iloprost and cPGI does not differ in extent and morphology from that induced by VEGF and is associated with local increment of VEGF mRNA expression and protein levels. Finally, iloprost-induced angiogenesis is significantly decreased by systemic inhibition of VEGF activity, obtained by gene transfer of a soluble form of the VEGF receptor Flt-1. CONCLUSIONS: These data demonstrate that stable PGI2 analogs may have angiogenic properties in vivo, depending on their ability to act on PPARs. The resulting angiogenic process appears to be mediated by VEGF. These findings indicate that important physiological activities in the cardiovascular system, such as angiogenesis and VEGF induction, may be modulated by PGI2 through specific activation of the PPAR signaling pathway in vivo, with potentially important fundamental and clinical implications.
AB - OBJECTIVE: Until recently, prostacyclin (PGI2) biological activities were thought to be exclusively mediated by cell surface receptors named IP. Recent studies have instead identified a novel pathway of PGI2 signaling, occurring through activation of peroxisome proliferator-activated receptors (PPARs) located in the nucleus. The availability of stable PGI2 analogs with different affinity for IP receptors and PPARs provides the possibility to test the importance and function of this dual pathway in vitro and in vivo. In this study, the in vivo angiogenic properties of different PGI2 analogs and the potential relationship between PPAR-mediated pathways, vascular endothelial growth factor (VEGF), and angiogenesis were investigated. METHODS AND RESULTS: By using the murine corneal model of angiogenesis, we found that PGI2 analogs able to act on nuclear PPARs, such as iloprost and carbaprostacyclin (cPGI), induce angiogenesis in vivo. In contrast, cicaprost, a PGI2 analog that only acts on IP receptors, has no in vivo angiogenic activity. Interestingly, angiogenesis induced by iloprost and cPGI does not differ in extent and morphology from that induced by VEGF and is associated with local increment of VEGF mRNA expression and protein levels. Finally, iloprost-induced angiogenesis is significantly decreased by systemic inhibition of VEGF activity, obtained by gene transfer of a soluble form of the VEGF receptor Flt-1. CONCLUSIONS: These data demonstrate that stable PGI2 analogs may have angiogenic properties in vivo, depending on their ability to act on PPARs. The resulting angiogenic process appears to be mediated by VEGF. These findings indicate that important physiological activities in the cardiovascular system, such as angiogenesis and VEGF induction, may be modulated by PGI2 through specific activation of the PPAR signaling pathway in vivo, with potentially important fundamental and clinical implications.
KW - PPARs
KW - VEGF
KW - angiogenesis
KW - prostacyclin
KW - PPARs
KW - VEGF
KW - angiogenesis
KW - prostacyclin
UR - http://hdl.handle.net/10807/4622
U2 - 10.1016/j.yjmcc.2003.10.016
DO - 10.1016/j.yjmcc.2003.10.016
M3 - Article
SN - 0022-2828
SP - 363
EP - 370
JO - Journal of Molecular and Cellular Cardiology
JF - Journal of Molecular and Cellular Cardiology
ER -