Cochlear injury and adaptive plasticity of the auditory cortex

Anna Rita Fetoni, Gaetano Paludetti, Diana Troiani, Laura Petrosini

Risultato della ricerca: Contributo in rivistaArticolo in rivista

19 Citazioni (Scopus)


Growing evidence suggests that cochlear stressors as noise exposure and aging can induce homeostatic/maladaptive changes in the central auditory system from the brainstem to the cortex. Studies centered on such changes have revealed several mechanisms that operate in the context of sensory disruption after insult (noise trauma, drug-, or age-related injury). The oxidative stress is central to current theories of induced sensory-neural hearing loss and aging, and interventions to attenuate the hearing loss are based on antioxidant agent. The present review addresses the recent literature on the alterations in hair cells and spiral ganglion neurons due to noise-induced oxidative stress in the cochlea, as well on the impact of cochlear damage on the auditory cortex neurons. The emerging image emphasizes that noise-induced deafferentation and upward spread of cochlear damage is associated with the altered dendritic architecture of auditory pyramidal neurons. The cortical modifications may be reversed by treatment with antioxidants counteracting the cochlear redox imbalance. These findings open new therapeutic approaches to treat the functional consequences of the cortical reorganization following cochlear damage.
Lingua originaleEnglish
pagine (da-a)1-7
Numero di pagine7
RivistaFrontiers in Aging Neuroscience
Stato di pubblicazionePubblicato - 2015


  • auditory cortex
  • noise-induced hearing loss
  • oxidative stress
  • presbycusis
  • pyramidal neurons

Fingerprint Entra nei temi di ricerca di 'Cochlear injury and adaptive plasticity of the auditory cortex'. Insieme formano una fingerprint unica.

Cita questo