Clonal evolution in therapy-related neoplasms

Emiliano Fabiani, Giulia Falconi, Luana Fianchi, Marianna Criscuolo, Tiziana Ottone, Laura Cicconi, Stefan Hohaus, Simona Sica, Massimiliano Postorino, Antonino Neri, Marta Lionetti, Giuseppe Leone, Francesco Lo-Coco, Maria Teresa Voso

Risultato della ricerca: Contributo in rivistaArticolo in rivista

11 Citazioni (Scopus)

Abstract

Therapy-related myeloid neoplasms (t-MN) may occur as a late effect of cytotoxic therapy for a primary malignancy or autoimmune diseases in susceptible individuals. We studied the development of somatic mutations in t-MN, using a collection of followup samples from 14 patients with a primary hematologic malignancy, who developed a secondary leukemia (13 t-MN and 1 t-acute lymphoblastic leukemia), at a median latency of 73 months (range 18-108) from primary cancer diagnosis. Using Sanger and next generation sequencing (NGS) approaches we identified 8 mutations (IDH1 R132H, ASXL1 Y591*, ASXL1 S689*, ASXL1 R693*, SRSF2 P95H, SF3B1 K700E, SETBP1 G870R and TP53 Y220C) in seven of thirteen t-MN patients (54%), whereas the t-ALL patient had a t(4,11) translocation, resulting in the KMT2A/ AFF1 fusion gene. These mutations were then tracked backwards in marrow samples preceding secondary leukemia occurrence, using pyrosequencing and a NGS protocol that allows the detection of low variant allele frequencies (≥0.1%). Somatic mutations were detectable in the BM harvested at the primary diagnosis, prior to any cytotoxic treatment in three patients, while they were not detectable and apparently acquired by the t-MN clone in five patients. These data show that clonal evolution in t-MN is heterogeneous, with some somatic mutations preceding cytotoxic treatment and possibly favoring leukemic development.
Lingua originaleEnglish
pagine (da-a)12031-12040
Numero di pagine10
RivistaOncotarget
Volume8
DOI
Stato di pubblicazionePubblicato - 2017

Keywords

  • Clonal evolution
  • Mutation
  • NGS
  • Oncology
  • Therapy-related neoplasms

Fingerprint

Entra nei temi di ricerca di 'Clonal evolution in therapy-related neoplasms'. Insieme formano una fingerprint unica.

Cita questo