Classification of Glomerulonephritis with CNN and Self-Attention Networks in Individual Glomeruli in Nephropathology

G. Bueno*, A. Pedraza, I. Mateos-Aparicio-Ruiz, Nguyen H. Van, N. Altini, H. Q. Vo, D. Dobi, Gibier J. -B., Gobbo A. Del, L. Gonzalez, L. Gesualdo, Francesco Pesce, M. Rossini, A. Rosenberg, J. U. Becker

*Autore corrispondente per questo lavoro

Risultato della ricerca: Contributo in rivistaArticolo

Abstract

Despite the renal biopsy being the gold standard for diagnosing glomerulonephritis, this practice remains inaccessible for many patients worldwide. Nephropathologists typically combine microscopy, immunohistology, transmission electron microscopy, clinical information, and genetic studies for diagnosis. However, variability in nephropathology evaluation has hindered its integration with emerging technologies and personalized medicine. This study proposes the use of deep learning to extract significant features to distinguish glomerulonephritis from PAS sections without other modalities. To test this hypothesis, various AI methods were tested for classifying 12 common glomerulonephritis diagnoses. Finally, a sequential classification was implemented, initially characterizing sclerosed and non-sclerosed glomeruli using Swin-Transformers, followed by classifying the non-sclerosed glomeruli into 12 types of glomerulonephritis using ConvNeXt. The first step achieved an average Balanced Accuracy of 97% and an AUC of 0.96. In the second step, a Balanced Accuracy considering up to the top3 of 79.5% and an avarage AUCs of 0.76 were achieved. This study establishes a baseline for this challenging classification task, demonstrating promising results even on single PAS glomerular crops.
Lingua originaleInglese
pagine (da-a)1-8
Numero di pagine8
RivistaKidney360
Volume1
Numero di pubblicazione1
DOI
Stato di pubblicazionePubblicato - 2024

All Science Journal Classification (ASJC) codes

  • Intelligenza Artificiale
  • Informatica Applicata
  • Visione Artificiale e Riconoscimento di Pattern
  • Teoria dei Segnali
  • Informatica della Salute
  • Ingegneria Biomedica
  • Strumentazione

Keywords

  • Classification of Glomerulonephritis
  • Deep Learning in Nephropathology
  • Digital Pathology
  • Self-Attention Architectures

Fingerprint

Entra nei temi di ricerca di 'Classification of Glomerulonephritis with CNN and Self-Attention Networks in Individual Glomeruli in Nephropathology'. Insieme formano una fingerprint unica.

Cita questo