Abstract
In this work we propose a multivariate functional clustering technique
based on a distance which generalize Mahalanobis distance to functional data generated
by stochastic processes. This new mathematical tool is well defined in L2(I),
where I is a compact interval of R, and considers all the infinite components of data
basis expansion while keeping the same ideas on which Mahalanobis distance is based.
To test the robustness of our clustering procedure we first present some simulations,
comparing the performances obtained using our distance and other known distances,
eventually applying it to a dataset of reconstructed and registered ECGs.
Lingua originale | English |
---|---|
Titolo della pubblicazione ospite | Classification and Data Analysis Group : Book of abstracts |
Pagine | 1-6 |
Numero di pagine | 6 |
Stato di pubblicazione | Pubblicato - 2017 |
Pubblicato esternamente | Sì |
Evento | Conference of the CLAssification and Data Analysis Group (CLADAG) - Milano Durata: 13 set 2017 → 15 set 2017 |
Convegno
Convegno | Conference of the CLAssification and Data Analysis Group (CLADAG) |
---|---|
Città | Milano |
Periodo | 13/9/17 → 15/9/17 |
Keywords
- Distances in L2
- ECG signals
- Functional Clustering
- Functional Data