Abstract
A characterization of weakly efficient, efficient and properly efficient solutions of multiobjective optimization problems is given in terms of a scalar optimization problem by using a special "distance" function. The concept of the well-posedness for this special scalar problem is then linked with the properly efficient solutions of the multiobjective problem.
Lingua originale | English |
---|---|
pagine (da-a) | 153-164 |
Numero di pagine | 12 |
Rivista | Rendiconti del Circolo Matematico di Palermo |
Volume | 51 |
DOI | |
Stato di pubblicazione | Pubblicato - 2001 |
Keywords
- multiobjective optimization
- scalarization
- well-posedness