TY - JOUR
T1 - Characterization of an inorganic scintillator for small-field dosimetry in MR-guided radiotherapy
AU - Cusumano, Davide
AU - Placidi, Lorenzo
AU - D'Agostino, Emiliano
AU - Boldrini, Luca
AU - Menna, Sebastiano
AU - Valentini, Vincenzo
AU - De Spirito, Marco
AU - Azario, Luigi
PY - 2020
Y1 - 2020
N2 - Introduction: Aim of this study is to dosimetrically characterize a new inorganic scintillator designed for magnetic resonance-guided radiotherapy (MRgRT) in the presence of 0.35 tesla magnetic field (B). Methods: The detector was characterized in terms of signal to noise ratio (SNR), reproducibility, dose linearity, angular response, and dependence by energy, field size, and B orientation using a 6 MV magnetic resonance (MR)-Linac and a water tank. Field size dependence was investigated by measuring the output factor (OF) at 1.5 cm. The results were compared with those measured using other detectors (ion chamber and synthetic diamond) and those calculated using a Monte Carlo (MC) algorithm. Energy dependence was investigated by acquiring a percentage depth dose (PDD) curve at two field sizes (3.32 × 3.32 and 9.96 × 9.96 cm2) and repeating the OF measurements at 5 and 10 cm depths. Results: The mean SNR was 116.3 ± 0.6. Detector repeatability was within 1%, angular dependence was <2% and its response variation based on the orientation with respect to the B lines was <1%. The detector has a temporal resolution of 10 Hz and it showed a linear response (R2 = 1) in the dose range investigated. All the OF values measured at 1.5 cm depth using the scintillator are in accordance within 1% with those measured with other detectors and are calculated using the MC algorithm. PDD values are in accordance with MC algorithm only for 3.32 × 3.32 cm2 field. Numerical models can be applied to compensate for energy dependence in case of larger fields. Conclusion: The inorganic scintillator in the present form can represent a valuable detector for small-field dosimetry and periodic quality controls at MR-Linacs such as dose stability, OFs, and dose linearity. In particular, the detector can be effectively used for small-field dosimetry at 1.5 cm depth and for PDD measurements if the field dimension of 3.32 × 3.32 cm2 is not exceeded.
AB - Introduction: Aim of this study is to dosimetrically characterize a new inorganic scintillator designed for magnetic resonance-guided radiotherapy (MRgRT) in the presence of 0.35 tesla magnetic field (B). Methods: The detector was characterized in terms of signal to noise ratio (SNR), reproducibility, dose linearity, angular response, and dependence by energy, field size, and B orientation using a 6 MV magnetic resonance (MR)-Linac and a water tank. Field size dependence was investigated by measuring the output factor (OF) at 1.5 cm. The results were compared with those measured using other detectors (ion chamber and synthetic diamond) and those calculated using a Monte Carlo (MC) algorithm. Energy dependence was investigated by acquiring a percentage depth dose (PDD) curve at two field sizes (3.32 × 3.32 and 9.96 × 9.96 cm2) and repeating the OF measurements at 5 and 10 cm depths. Results: The mean SNR was 116.3 ± 0.6. Detector repeatability was within 1%, angular dependence was <2% and its response variation based on the orientation with respect to the B lines was <1%. The detector has a temporal resolution of 10 Hz and it showed a linear response (R2 = 1) in the dose range investigated. All the OF values measured at 1.5 cm depth using the scintillator are in accordance within 1% with those measured with other detectors and are calculated using the MC algorithm. PDD values are in accordance with MC algorithm only for 3.32 × 3.32 cm2 field. Numerical models can be applied to compensate for energy dependence in case of larger fields. Conclusion: The inorganic scintillator in the present form can represent a valuable detector for small-field dosimetry and periodic quality controls at MR-Linacs such as dose stability, OFs, and dose linearity. In particular, the detector can be effectively used for small-field dosimetry at 1.5 cm depth and for PDD measurements if the field dimension of 3.32 × 3.32 cm2 is not exceeded.
KW - Humans
KW - MR-guided radiotherapy
KW - Monte Carlo Method
KW - Particle Accelerators
KW - Radiometry
KW - Radiotherapy, Image-Guided
KW - Reproducibility of Results
KW - inorganic scintillator
KW - real-time dosimetry
KW - small-field dosimetry
KW - Humans
KW - MR-guided radiotherapy
KW - Monte Carlo Method
KW - Particle Accelerators
KW - Radiometry
KW - Radiotherapy, Image-Guided
KW - Reproducibility of Results
KW - inorganic scintillator
KW - real-time dosimetry
KW - small-field dosimetry
UR - http://hdl.handle.net/10807/207145
U2 - 10.1002/acm2.13012
DO - 10.1002/acm2.13012
M3 - Article
SN - 1526-9914
VL - 21
SP - 244
EP - 251
JO - Journal of Applied Clinical Medical Physics
JF - Journal of Applied Clinical Medical Physics
ER -