Bayesian Semiparametric Multivariate Change Point Analysis

Stefano Peluso*, Chib Shiddharta, Mira Antonietta

*Autore corrispondente per questo lavoro

Risultato della ricerca: Contributo in libroContributo a convegno


We develop a general Bayesian semiparametric change-point model in which separate groups of parameters (for example, location and dispersion) can each follow a separate multiple change-point process, driven by time-dependent transition matrices among the latent regimes. The distribution of the observations within regimes dened by the various change-points is unknown and given by a Dirichlet process mixture prior. The prior-posterior analysis by Markov chain Monte Carlo techniques is developed on a multivariate forward-backward algorithm for sampling the various regime indicators.
Lingua originaleEnglish
Titolo della pubblicazione ospiteBook of abstracts of ISBA 2016 World Meeting
Numero di pagine1
Stato di pubblicazionePubblicato - 2016
EventoISBA 2016 World Meeting - Cagliari
Durata: 13 giu 201617 giu 2016


ConvegnoISBA 2016 World Meeting


  • Bayesian Nonparametrics
  • Change Point


Entra nei temi di ricerca di 'Bayesian Semiparametric Multivariate Change Point Analysis'. Insieme formano una fingerprint unica.

Cita questo