Abstract
We develop a general Bayesian semiparametric change-point model in which separate groups of parameters (for example, location and dispersion) can each follow a separate multiple change-point process, driven by time-dependent transition matrices among the latent regimes. The distribution of the observations within regimes dened by the various change-points is unknown and given by a Dirichlet process mixture prior. The prior-posterior analysis by Markov chain Monte Carlo techniques is developed on a multivariate forward-backward algorithm for sampling the various regime indicators.
Lingua originale | English |
---|---|
Titolo della pubblicazione ospite | Book of abstracts of ISBA 2016 World Meeting |
Pagine | 1 |
Numero di pagine | 1 |
Stato di pubblicazione | Pubblicato - 2016 |
Evento | ISBA 2016 World Meeting - Cagliari Durata: 13 giu 2016 → 17 giu 2016 |
Convegno
Convegno | ISBA 2016 World Meeting |
---|---|
Città | Cagliari |
Periodo | 13/6/16 → 17/6/16 |
Keywords
- Bayesian Nonparametrics
- Change Point