TY - JOUR
T1 - Assessment of the impact of three pesticides on microbial dynamics and functions in a lab-to-field experimental approach
AU - Karas, P. A.
AU - Baguelin, C.
AU - Pertile, Giorgia
AU - Papadopoulou, E. S.
AU - Nikolaki, S.
AU - Storck, V.
AU - Ferrari, Federico
AU - Trevisan, Marco
AU - Ferrarini, Andrea
AU - Fornasier, F.
AU - Vasileiadis, S.
AU - Vasileiadis, Sotirios
AU - Tsiamis, G.
AU - Martin-Laurent, F.
AU - Karpouzas, D. G.
PY - 2018
Y1 - 2018
N2 - The toxicity of pesticides on soil microorganisms is as an emerging area of concern. Novel and well-standardized tools could be now used to provide a robust assessment of the ecotoxicity of pesticides on soil microorganisms. We followed a tiered lab-to-field approach to assess the toxicity of three pesticides, widely used at EU level, (chlorpyrifos (CHL), isoproturon (IPU) and tebuconazole (TBZ)) on (i) the abundance of 11 microbial taxa and 8 functional microbial groups via q-PCR and (ii) the activity of enzymes involved in biogeochemical cycles via fluorometric analysis. Correlation of microbial measurements with the concentration of pesticides, and their transformation products (TPs) in soil enabled the identification of the compounds driving the effects observed. At lab tests (×1, ×2 and ×10 the recommended dose), CHL and TBZ significantly reduced the relative abundance of ammonia-oxidizing bacteria (AOB) and archaea (AOA) which recovered by the end of the study, while all pesticides induced a persistent reduction in the relative abundance of sulfur-oxidizing bacteria (SOB). The two demethylated metabolites of IPU (MD-IPU and DD-IPU) adversely affected P-cycling enzymes and leucine aminopeptidase (Leu). At field tests (×1, ×2 and ×5 the recommended dose), a persistent reduction on the relative abundance of AOA was induced by all pesticides, but only CHL and its hydrolysis product 3,5,6 trichloro-2-pyridynol (TCP) soil levels were negatively correlated with AOA relative abundance. Our findings suggest that ammonia-oxidizing microorganisms constitute the most responsive microbial group to pesticides and could be potential candidates for inclusion in pesticide risk assessment.
AB - The toxicity of pesticides on soil microorganisms is as an emerging area of concern. Novel and well-standardized tools could be now used to provide a robust assessment of the ecotoxicity of pesticides on soil microorganisms. We followed a tiered lab-to-field approach to assess the toxicity of three pesticides, widely used at EU level, (chlorpyrifos (CHL), isoproturon (IPU) and tebuconazole (TBZ)) on (i) the abundance of 11 microbial taxa and 8 functional microbial groups via q-PCR and (ii) the activity of enzymes involved in biogeochemical cycles via fluorometric analysis. Correlation of microbial measurements with the concentration of pesticides, and their transformation products (TPs) in soil enabled the identification of the compounds driving the effects observed. At lab tests (×1, ×2 and ×10 the recommended dose), CHL and TBZ significantly reduced the relative abundance of ammonia-oxidizing bacteria (AOB) and archaea (AOA) which recovered by the end of the study, while all pesticides induced a persistent reduction in the relative abundance of sulfur-oxidizing bacteria (SOB). The two demethylated metabolites of IPU (MD-IPU and DD-IPU) adversely affected P-cycling enzymes and leucine aminopeptidase (Leu). At field tests (×1, ×2 and ×5 the recommended dose), a persistent reduction on the relative abundance of AOA was induced by all pesticides, but only CHL and its hydrolysis product 3,5,6 trichloro-2-pyridynol (TCP) soil levels were negatively correlated with AOA relative abundance. Our findings suggest that ammonia-oxidizing microorganisms constitute the most responsive microbial group to pesticides and could be potential candidates for inclusion in pesticide risk assessment.
KW - Ammonia-oxidizing microorganisms
KW - Chlorpyrifos
KW - Environmental risk assessmen
KW - Isoproturon
KW - Pesticides soil microbial toxicity
KW - Tebuconazole
KW - Ammonia-oxidizing microorganisms
KW - Chlorpyrifos
KW - Environmental risk assessmen
KW - Isoproturon
KW - Pesticides soil microbial toxicity
KW - Tebuconazole
UR - http://hdl.handle.net/10807/132050
U2 - 10.1016/j.scitotenv.2018.05.073
DO - 10.1016/j.scitotenv.2018.05.073
M3 - Article
SN - 0048-9697
SP - 636
EP - 646
JO - Science of the Total Environment
JF - Science of the Total Environment
ER -