TY - JOUR
T1 - Assessment of human herpesvirus-6 infection in mesenchymal stromal cells ex vivo expanded for clinical use
AU - Pessina, A.
AU - Bonomi, A.
AU - Coccè, V.
AU - Bernardo, M. E.
AU - Cometa, A. M.
AU - Ferrari, M.
AU - Sisto, F.
AU - Cavicchini, L.
AU - Locatelli, Franco
PY - 2009
Y1 - 2009
N2 - P>Infection or reactivation of human herpesvirus (HHV)-6 represents a potentially serious complication (often involving the central nervous system) in patients receiving either solid organ or hematopoietic stem cell transplantation. The objective of this study was to assess the risk of HHV-6 infection/reactivation in mesenchymal stromal cells (MSCs). MSCs are multipotent cells displaying immunomodulatory properties that have been already successfully used in the clinical setting to enhance hematopoietic stem cell engraftment and to treat steroid-refractory acute graft-versus-host disease. We analyzed 20 samples of ex vivo expanded MSCs, at different passages of culture, isolated both from bone marrow and from umbilical cord blood. Through Western blotting and immunocytochemistry techniques, we investigated the presence of the HHV-6 receptor (CD46) on cell surface, whereas the presence of HHV-6 DNA was evaluated by nested polymerase chain reaction assay. All of the MSC samples tested were positive for the virus receptor (CD46), suggesting their potential susceptibility to HHV-6. However, none of the MSC samples derived from cultures, performed in the perspective of clinical use, was found to harbor HHV-6. This preliminary observation on a consistent number of MSC samples, some of them tested at late in vitro passages, indicates a good safety profile of the product in terms of HHV-6 contamination. Nevertheless, it remains important to set up in vitro experimental models to study MSCs' susceptibility to HHV-6 (and HHV-7) infection, to verify their capacity to integrate the virus into cellular DNA, and to investigate which experimental conditions are able to induce virus reactivation.
AB - P>Infection or reactivation of human herpesvirus (HHV)-6 represents a potentially serious complication (often involving the central nervous system) in patients receiving either solid organ or hematopoietic stem cell transplantation. The objective of this study was to assess the risk of HHV-6 infection/reactivation in mesenchymal stromal cells (MSCs). MSCs are multipotent cells displaying immunomodulatory properties that have been already successfully used in the clinical setting to enhance hematopoietic stem cell engraftment and to treat steroid-refractory acute graft-versus-host disease. We analyzed 20 samples of ex vivo expanded MSCs, at different passages of culture, isolated both from bone marrow and from umbilical cord blood. Through Western blotting and immunocytochemistry techniques, we investigated the presence of the HHV-6 receptor (CD46) on cell surface, whereas the presence of HHV-6 DNA was evaluated by nested polymerase chain reaction assay. All of the MSC samples tested were positive for the virus receptor (CD46), suggesting their potential susceptibility to HHV-6. However, none of the MSC samples derived from cultures, performed in the perspective of clinical use, was found to harbor HHV-6. This preliminary observation on a consistent number of MSC samples, some of them tested at late in vitro passages, indicates a good safety profile of the product in terms of HHV-6 contamination. Nevertheless, it remains important to set up in vitro experimental models to study MSCs' susceptibility to HHV-6 (and HHV-7) infection, to verify their capacity to integrate the virus into cellular DNA, and to investigate which experimental conditions are able to induce virus reactivation.
KW - HHV-6
KW - mesenchymal stromal cells
KW - herpesvirus
KW - HHV-6
KW - mesenchymal stromal cells
KW - herpesvirus
UR - http://hdl.handle.net/10807/257524
U2 - 10.1111/j.1399-3062.2009.00427.x
DO - 10.1111/j.1399-3062.2009.00427.x
M3 - Article
SN - 1399-3062
VL - 11
SP - 491
EP - 496
JO - Transplant Infectious Disease
JF - Transplant Infectious Disease
ER -