TY - JOUR
T1 - Aspirin-insensitive thromboxane biosynthesis in essential thrombocythemia is explained by accelerated renewal of the drug target
AU - Pascale, Silvia
AU - Petrucci, Giovanna
AU - Dragani, Alfredo
AU - Habib, Aida
AU - Zaccardi, Francesco
AU - Pagliaccia, Francesca
AU - Pocaterra, Davide
AU - Ragazzoni, Enzo
AU - Rolandi, Giancarlo
AU - Rocca, Bianca
AU - Patrono, Carlo
PY - 2012
Y1 - 2012
N2 - Essential thrombocythemia (ET) is characterized by enhanced platelet generation and thrombotic complications. Once-daily low-dose aspirin incompletely inhibits platelet thromboxane A(2) (TXA(2)) in the majority of ET patients. In the present study, we investigated the determinants of aspirin-insensitive platelet TXA(2) biosynthesis and whether it could be further suppressed by changing the aspirin dose, formulation, or dosing interval. In 41 aspirin-treated ET patients, the immature platelet count predicted serum TXB(2) independently of platelet count, age, JAK-2 V617F mutation, or cytoreduction (β = 3.53, P = .001). Twenty-one aspirin-treated patients with serum TXB(2) ≥ 4 ng/mL at 24 hours after dosing were randomized to the following 7-day regimens in a crossover design: enteric-coated aspirin 100 mg twice daily, enteric-coated aspirin 200 mg once daily, or plain aspirin 100 mg once daily. A twice-daily regimen caused a further 88% median (IQR, 78%-92%, P < .001) TXB(2) reduction and normalized the functional platelet response to aspirin, as assessed by urinary 11-dehydro-TXB(2) excretion and the VerifyNow Aspirin assay. Doubling the aspirin dose reduced serum TXB(2) only partially by 39% median (IQR, 29%-54%, P < .05). We conclude that the abnormal megakaryopoiesis characterizing ET accounts for a shorter-lasting antiplatelet effect of low-dose aspirin through faster renewal of platelet cyclooxygenase-1, and impaired platelet inhibition can be rescued by modulating the aspirin dosing interval rather than the dose.
AB - Essential thrombocythemia (ET) is characterized by enhanced platelet generation and thrombotic complications. Once-daily low-dose aspirin incompletely inhibits platelet thromboxane A(2) (TXA(2)) in the majority of ET patients. In the present study, we investigated the determinants of aspirin-insensitive platelet TXA(2) biosynthesis and whether it could be further suppressed by changing the aspirin dose, formulation, or dosing interval. In 41 aspirin-treated ET patients, the immature platelet count predicted serum TXB(2) independently of platelet count, age, JAK-2 V617F mutation, or cytoreduction (β = 3.53, P = .001). Twenty-one aspirin-treated patients with serum TXB(2) ≥ 4 ng/mL at 24 hours after dosing were randomized to the following 7-day regimens in a crossover design: enteric-coated aspirin 100 mg twice daily, enteric-coated aspirin 200 mg once daily, or plain aspirin 100 mg once daily. A twice-daily regimen caused a further 88% median (IQR, 78%-92%, P < .001) TXB(2) reduction and normalized the functional platelet response to aspirin, as assessed by urinary 11-dehydro-TXB(2) excretion and the VerifyNow Aspirin assay. Doubling the aspirin dose reduced serum TXB(2) only partially by 39% median (IQR, 29%-54%, P < .05). We conclude that the abnormal megakaryopoiesis characterizing ET accounts for a shorter-lasting antiplatelet effect of low-dose aspirin through faster renewal of platelet cyclooxygenase-1, and impaired platelet inhibition can be rescued by modulating the aspirin dosing interval rather than the dose.
KW - Aspirin
KW - thrombocythemia
KW - thromboxane
KW - Aspirin
KW - thrombocythemia
KW - thromboxane
UR - http://hdl.handle.net/10807/6604
U2 - 10.1182/blood-2011-06-359224
DO - 10.1182/blood-2011-06-359224
M3 - Article
SN - 1528-0020
VL - 119
SP - 3595
EP - 3603
JO - Blood
JF - Blood
ER -