Abstract
Several clinical studies indicated that the daily use of aspirin or acetylsalicylic acid reduces the cancer risk via cyclooxygenases (Cox-1 and Cox-2) inhibition. In addition, aspirin-induced Cox-dependent and -independent antitumor effects have also been described. Here we report, for the first time, that aspirin treatment of human glioblastoma cancer (GBM) stem cells, a small population responsible for tumor progression and recurrence, is associated with reduced cell proliferation and motility. Aspirin did not interfere with cell viability but induced cell-cycle arrest. Exogenous prostaglandin E2 significantly increased cell proliferation but did not abrogate the aspirin-mediated growth inhibition, suggesting a Cox-independent mechanism. These effects appear to be mediated by the increase of p21 waf1 and p27 Kip1, associated with a reduction of Cyclin D1 and Rb1 protein phosphorylation, and involve the downregulation of key molecules responsible for tumor development, that is, Notch1, Sox2, Stat3, and Survivin. Our results support a possible role of aspirin as adjunctive therapy in the clinical management of GBM patients.
Lingua originale | English |
---|---|
pagine (da-a) | 15459-15471 |
Numero di pagine | 13 |
Rivista | Journal of Cellular Physiology |
Volume | 234 |
DOI | |
Stato di pubblicazione | Pubblicato - 2019 |
Keywords
- CSC
- Cell Biology
- Clinical Biochemistry
- Cox
- GBM
- Physiology
- Rb1
- aspirin
- stemness