Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and orders

Ilaria Negri, Elena Crotti, Claudia Damiani, Massimo Pajoro, Elena Gonella, Aurora Rizzi, Irene Ricci, Patrizia Scuppa, Paolo Rossi, Patrizia Ballarini, Noura Raddadi, Massimo Marzorati, Luciano Sacchi, Emanuela Clementi, Marco Genchi, Mauro Mandrioli, Claudio Bandi, Guido Favia, Alberto Alma, Daniele Daffonchio

Risultato della ricerca: Contributo in rivistaArticolo in rivista

106 Citazioni (Scopus)

Abstract

Bacterial symbionts of insects have been proposed for blocking transmission of vector-borne pathogens. However, in many vector models the ecology of symbionts and their capability of cross-colonizing different hosts, an important feature in the symbiotic control approach, is poorly known. Here we show that the acetic acid bacterium Asaia, previously found in the malaria mosquito vector Anopheles stephensi, is also present in, and capable of cross-colonizing other sugar-feeding insects of phylogenetically distant genera and orders. PCR, real-time PCR and in situ hybridization experiments showed Asaia in the body of the mosquito Aedes aegypti and the leafhopper Scaphoideus titanus, vectors of human viruses and a grapevine phytoplasma respectively. Cross-colonization patterns of the body of Ae. aegypti, An. stephensi and S. titanus have been documented with Asaia strains isolated from An. stephensi or Ae. aegypti, and labelled with plasmid- or chromosome-encoded fluorescent proteins (Gfp and DsRed respectively). Fluorescence and confocal microscopy showed that Asaia, administered with the sugar meal, efficiently colonized guts, male and female reproductive systems and the salivary glands. The ability in cross-colonizing insects of phylogenetically distant orders indicated that Asaia adopts body invasion mechanisms independent from host-specific biological characteristics. This versatility is an important property for the development of symbiont-based control of different vector-borne diseases.
Lingua originaleEnglish
pagine (da-a)3252-3264
Numero di pagine13
RivistaEnvironmental Microbiology
Volume11
DOI
Stato di pubblicazionePubblicato - 2009

Keywords

  • Acetic Acid
  • Acetobacteraceae
  • Animals
  • Base Sequence
  • Culicidae
  • Disease Vectors
  • Hemiptera
  • Insects
  • Molecular Sequence Data
  • Symbiosis

Fingerprint Entra nei temi di ricerca di 'Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and orders'. Insieme formano una fingerprint unica.

Cita questo