TY - JOUR
T1 - Antioxidant capacity of tomato seed oil in solution and its redox properties in cultured macrophages
AU - Catalano, Assunta
AU - Cittadini, Achille Renato Maria
AU - Palozza, Paola
AU - Muller, L
AU - Simone, Rossella Emanuela
AU - Fröhlich, K
AU - Böhm, V
PY - 2013
Y1 - 2013
N2 - The health benefits of tomato seed oil (TSO) have been suggested to be related to its antioxidant activity, although at the moment not much information is available on the antioxidant effects of TSO in biological systems. In this paper, we evaluated the antioxidant capacity of TSO using different spectrophotometrical antioxidant assays (LPSC, FRAP, αTEAC, DPPH). Moreover, we determined the ability of TSO in inhibiting oxidative stress in human cultured macrophages. The peroxyl radical scavenging LPSC assay was the most sensitive assay to detect the antioxidant capacity of the TSO, followed by the DPPH, FRAP, and αTEAC assay. TSO was able to counteract spontaneous and H(2)O(2)-induced oxidative stress in human macrophages, limiting intracellular ROS production and controlling oxidative stress signaling. In particular, TSO was able to decrease the phosphorylation of the MAPK ERK1/2, JNK, and p-38, activation of the redox-sensitive NF-kB, and expression of the heat shock proteins 70 and 90. When the antioxidant capacity of TSO was compared with that of purified lycopene, inhibition of ROS production by TSO was remarkably higher. This was due to the high content of other antioxidants in TSO, including (5Z)-, (9Z)-, (13Z)-, and (15Z)-lycopene isomers, β-carotene, lutein, γ-tocopherol, and α-tocopherol.
AB - The health benefits of tomato seed oil (TSO) have been suggested to be related to its antioxidant activity, although at the moment not much information is available on the antioxidant effects of TSO in biological systems. In this paper, we evaluated the antioxidant capacity of TSO using different spectrophotometrical antioxidant assays (LPSC, FRAP, αTEAC, DPPH). Moreover, we determined the ability of TSO in inhibiting oxidative stress in human cultured macrophages. The peroxyl radical scavenging LPSC assay was the most sensitive assay to detect the antioxidant capacity of the TSO, followed by the DPPH, FRAP, and αTEAC assay. TSO was able to counteract spontaneous and H(2)O(2)-induced oxidative stress in human macrophages, limiting intracellular ROS production and controlling oxidative stress signaling. In particular, TSO was able to decrease the phosphorylation of the MAPK ERK1/2, JNK, and p-38, activation of the redox-sensitive NF-kB, and expression of the heat shock proteins 70 and 90. When the antioxidant capacity of TSO was compared with that of purified lycopene, inhibition of ROS production by TSO was remarkably higher. This was due to the high content of other antioxidants in TSO, including (5Z)-, (9Z)-, (13Z)-, and (15Z)-lycopene isomers, β-carotene, lutein, γ-tocopherol, and α-tocopherol.
KW - antioxidant capacity
KW - tomato seed oil
KW - antioxidant capacity
KW - tomato seed oil
UR - http://hdl.handle.net/10807/40156
M3 - Article
SP - 346
EP - 354
JO - Journal of Agricultural and Food Chemistry
JF - Journal of Agricultural and Food Chemistry
SN - 0021-8561
ER -